

Fundamentals of Meter Provers and Proving Methods Braden Montalvo

Flow Management Devices

■SERVICE, EXPERIENCE, INNOVATION & EXCELLENCE

1

Presentation Content

- Fundamentals of meter proving
 - Definitions
 - What is Meter Proving?
 - Why Do We Prove?
- Meter proving techniques and characteristics
 - Tank Provers
 - Weigh Scale (Used for Meter Calibration)
 - Master Meter
 - Displacement Ball Provers
 - Uni-Directional Captive Displacement or Small Volume Provers

5/10/2024

API Definitions

- Calibration: The procedure used to determine the volume of a prover.
- Meter proof: The multiple passes or round trips of the displacer in a prover for purposes of determining a meter factor.
- Meter prover: An open or closed vessel of known volume that is used as a volumetric
 reference standard for the calibration of meters in liquid petroleum service. Such provers are
 designed, fabricated, and operated within the recommendations of API Chapter 4 MPMS's.
- Meter pulse: A single electrical pulse generated by flow induced effects in the meter. The
 flow induced effects are normally caused by movement of physical elements within the
 meter's primary flow element but may be caused by other flow induced effects that are
 proportional to flow rate. The pulses produced by the meter shall not be multiplied to
 increase the number of pulses to conform to the requirements of Chapter 4.
- **Prover pass:** One movement of the displacer between the detectors in a prover.
- Prover round trip: The forward and reverse passes in a bi-directional prover.
- **Proving:** The procedure used to determine a meter factor.
- Standard conditions: 60°F and atmospheric pressure.

5/10/2024

American School of Gas Measurement Technology 2023

3

What is Meter Proving

API Definition from MPMS 4.1.5

The purpose of proving a meter is to determine its meter factor, which is the number obtained by dividing the registered volume of the meter by the actual volume of liquid passed through a prover.

Volume Register by Meter
Actual Volume Passed thru Prover

= New Meter Factor

The purpose of a meter factor is to correct a meter's indicated volume. Obtaining a meter factor is an essential step in calculating the standard net volume of a receipt or delivery of petroleum liquids.

5/10/2024

Why do we Prove?

Why do companies perform flow meter proving?

Flow measurement systems are the "cash registers" for all petroleum operations.

What does it all mean?

Simply stated.

Errors in meter factors can and will **generate enormous financial errors** in a company's invoicing in a very short period of time!

5/10/2024

American School of Gas Measurement Technology 2023

5

Reasons for Meter Proving

A Prover is used for flow meter calibration to establish:

The meter's meter factor (Actual volume divided by indicated volume)

The meter's Linearity (Accuracy over the calibrated flow range)

The meter's **Repeatability** (Repeatable information under same conditions)

The meter's K - Factor (Pulses per unit volume) (Sometimes established by Mfg)

FLOW MANAGEMENT

5/10/2024

General Considerations

API Definition from MPMS 4.1.5

All meters should be proved with the liquid to be measured and at operating flow(s) rate, pressure, and temperature.


This means the preferred way of proving a flow meter is installed and under actual operational conditions.

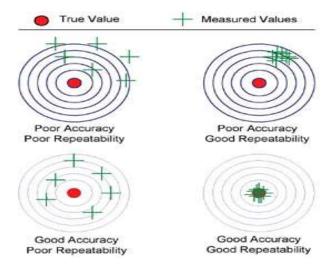
5/10/2024

American School of Gas Measurement Technology 2023

7

Repeatability and Reproducibility

• Repeatability is the ability to obtain identical measurement results when a measurement is repeated under the same conditions several times in a row.


Repeatability (%) = (Maximum - Minimum) / Maximum * 100%

Reproducibility is the ability to obtain identical measurement results when a
measurement is preformed under the same conditions at a later date, by other
people or at a different location.

5/10/2024

Definitions of Uncertainty

5/10/2024

American School of Gas Measurement Technology 2023

11

API Chapter 4 MPMS's—Proving Systems

Section 1—"Introduction"

Section 2—"Displacement Provers"

Section 4—"Tank Provers"

Section 5—"Master-Meter Provers"

Section 6—"Pulse Interpolation"

Section 7—"Field-Standard Test Measures"

Section 8—"Operation of Proving Systems"

Section 9—"Calibration of Provers

12 FLOW MANAGEMENT

5/10/2024

History of the Provers

- In 1930s
 - > Volumetric tanks were used
- In the early 1950s
 - > The first pipe Provers was a mile in length and linked two oil refineries
- In the late 1960s
 - > A pipe Prover called a "small volume Prover" was developed that used an electronic pulse-counting technique called double chronometry
- In the late 1970s and early 1980s
 - > Mechanical switches were replaced by more precision optical switches
- In 1996 changes were made to the terminology in NIST Handbook 44
 - > "Liquid Measuring Device Code paragraph N.3.5. in order to allow the use of SVPs
- 1997 NIST Handbook 105-7
 - > "Specifications and Tolerances for Dynamic Small Volume Provers" was published.

5/10/2024

American School of Gas Measurement Technology 2022

13

Volumetric Prover (1930 technology)

<u>Ball Prover</u> (1950 technology)

<u>Unidirectional Captive Displacement Provers (Small Volume Provers)</u>

5/10/2024

Uni-Directional Captive Displacement Prover

15

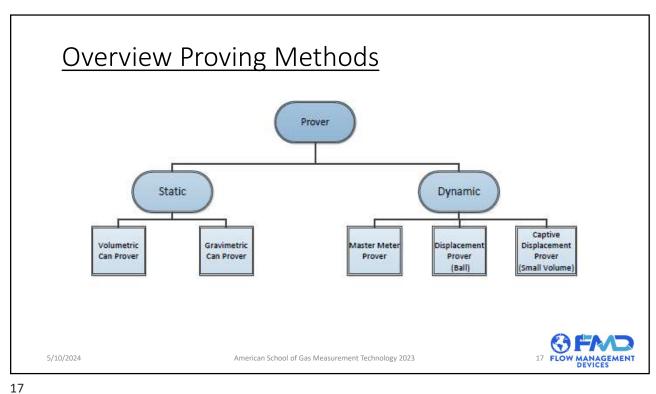
Meter Proving Methods

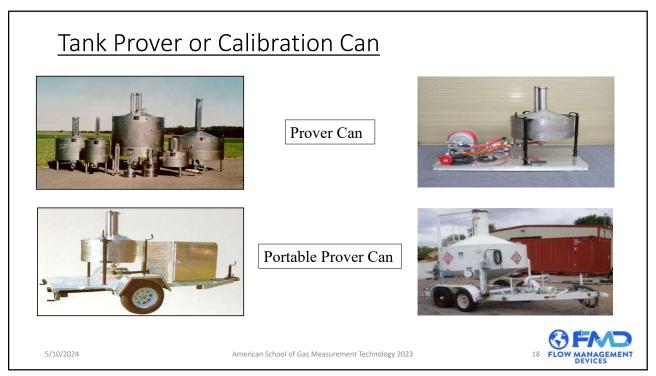
Static Proving / Calibration

The proving is performed using a device designed to collect the discharged fluid from a flow meter in a container. The **fluid** is **measured** in a static condition.

- Calibration Can
- · Weigh Scales

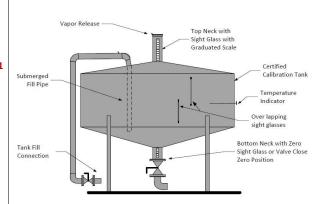
Dynamic Proving


The proving is performed with the fluid flowing through the flow meter and the proving device.


- Master Meter
- Ball Prover
- Small Volume Prover

5/10/2024

American School of Gas Measurement Technology 2023



Tank Prover Components

Characteristics of Volumetric Meter Proving with Prover Can

- Size of the can determined based on the collection of 1 minute of flow
- Prover "Can" usually 1 to 1500 gallons flow rate dependent.
- Relatively Inexpensive.
- High accuracy, closer to national standard.
- Used to Volumetrically Water Draw other types of proving devices.

5/10/2024

American School of Gas Measurement Technology 2023

19

Prover Can Characteristics

Volumetric Meter Proving with Prover Can:

- Size of the can determined based on the collection of 1 minute of flow
- Prover "Can" usually 1 to 1500 gallons flow rate dependent.
- Relatively Inexpensive.
- High accuracy, closer to national standard.
- Used to Volumetrically Water Draw other types of proving devices.

5/10/2024

Weigh Scale

Characteristics of a Weigh Scale

- Seldom used (only when local regulations require it)
- Scale installation crucial (Placed horizontal and level)
- External influences to measurement (wind, temperature, location)
- Frequently used in laboratories to calibrate meters
- High accuracy closest to standards
- Used for Gravimetric Water Draw for other types proving devices

5/10/2024

American School of Gas Measurement Technology 2023

21

Weigh Scale Characteristics

- Seldom used (only when local regulations require it)
- Scale installation crucial (Placed horizontal and level)
- External influences to measurement (wind, temperature, location)
- Frequently used in laboratories to calibrate meters
- High accuracy closest to standards
- Used for Gravimetric Water Draw for other types proving devices

5/10/2024

Master Meters

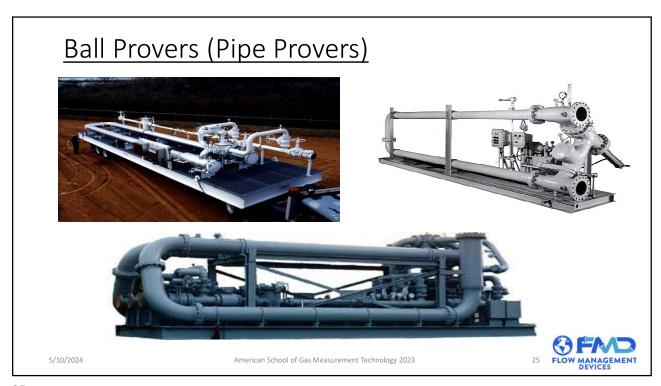
5/10/2024

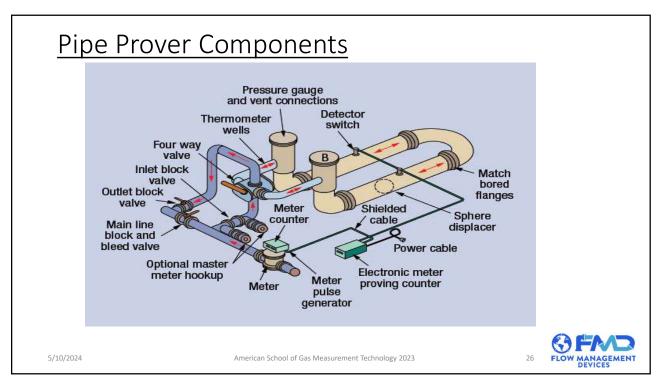
American School of Gas Measurement Technology 2022

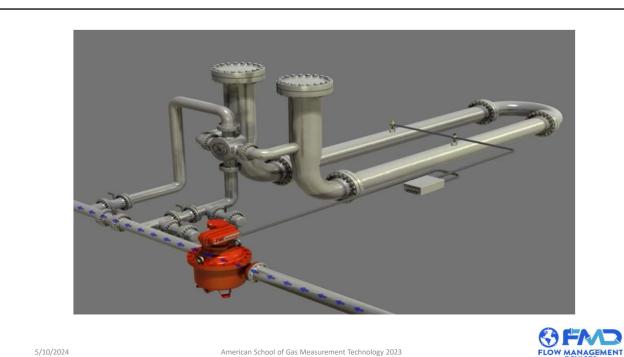
23

Master Meters

Master Meter Characteristics

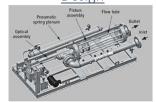

- Can be an assigned meter in a flow meter rack or separate meter of a different technology.
- Typical metering set up is using combination of displacement prover and master meter. Master meter is calibrated frequently and used to calibrate other flow meters.
- Typically, PD-meters, turbine meters and ultra sonic meters (in large sizes to prover other Ultrasonic's) are used as master meter.
- An Indefinite volume can be created to gather required number of flowmeter pulses.
- Relatively Inexpensive.




5/10/2024

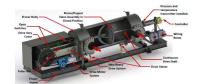
American School of Gas Measurement Technology 2023

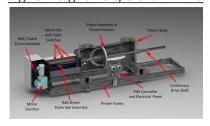
Captive Displacement or Small Volume Provers


5/10/2024

American School of Gas Measurement Technology 2023

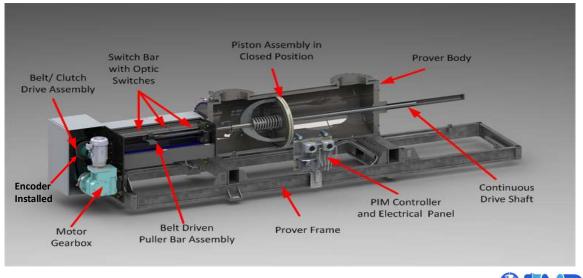



Hydraulic Drive Provers
Design


Magnetic Drive Design

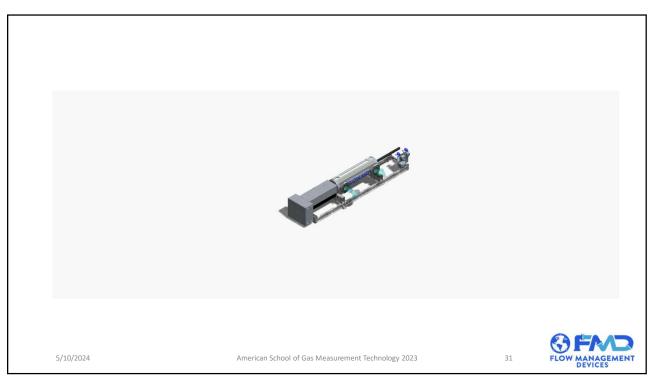
Chain Drive Provers
Design

Light Weight Belt/Clutch Drive



Improved Piston/Poppet Design

29


Prover Components

5/10/2024

American School of Gas Measurement Technology 2023

FLOW MANAGEMENT DEVICES

Summary

Technique	Advantages	Disadvantage
Prover Can	Inexpensive	Limited flow rate
	Accuracy	Unpractical large flow rates
Weigh Scale	Inexpensive	External influences required
	Accuracy	enclosure if used in the field
Master Meter	Unlimited volume	Inaccurate
	Inexpensive	Drift
	Closed system	Range of products limited
Ball Prover	High flow rate	Large footprint
	Work on most liquids	Maintenance sensitive
	Closed system	Expensive
SVP	Works on all Liquids	Expensive
	High flow rates and turndown	"Thought to be Complex"
	Small Foot Print	
	Closed system	

5/10/2024

Corpus Christi Area Measurement Society

Water draw of Provers

- To determine the calibrated volume of a prover a water draw is performed.
- Can be either gravimetric or volumetric water draw.
- Corrections are made for:
 - Corrections for liquid temperature to compensate for thermal expansion of used liquid
 - Correction for pressure of liquid to compensate for compressibility of the used liquid
 - Correction for temperature of switch bar material to compensate for thermal expansion of steel
- Uncertainty of water draw around 0.01%
- Repeatability better then 0.02%

5/10/2024

American School of Gas Measurement Technology 2023

FLOW MANAGEM DEVICES

33

Volumetric Water Draw

Gravimetric Water Draw

35

Portable Water Draw Options

Portable Volumetric

Portable Gravimetric

Questions?

Thanks for your time!

5/10/2024

American School of Gas Measurement Technology 2023

