CALCULATION OF NATURAL GAS LIQUID QUANTITIES

Keith Fry
Howard Measurement Company, Inc.

INTRODUCTION

There is no substitute for well maintained, properly installed, and properly performing measurement equipment. Industrystandard measurement equipment installation, operation, and maintenance provide the raw data necessary for those dealing with natural gas liquids (NGLs) to transact business. Then, this raw data can be adjusted or converted to values suitable for transactions to take place and for proper accounting.

To determine which adjustments or conversions to use, begin by understanding the desired results. Some measurement processes and accounting applications require volumetric quantities. Others require mass quantities. For many NGL applications, the preferred outcomes are liquid volumes of pure components. This is because many NGLs are eventually fractionated into pure products and market prices for these are readily available. Sometimes, the gas equivalent values of liquids are useful for operations.

Knowing the starting point is equally important. The starting point can vary depending on the type of measurement. Different resources and applications provide for different means of measuring NGLs. Quantity measurements can be made on a mass basis or a volumetric basis.

NGL MEASUREMENT BY VOLUME

When NGLs are measured volumetrically, the measured volume is converted to contract base conditions. Conditions consist of a specified pressure, temperature, and density. Measured, observed, or indicated conditions are the conditions of the liquid at the time of measurement. Base conditions or contract base conditions are the conditions specified in the contract between the buyer and seller. The American Petroleum Institute (API) Manual of Petroleum Measurement Standards (MPMS), Chapter 12, Part 2, 2021 Edition ${ }^{[1]}$, a.k.a. API-12.2, provides guidance for volumetric conversions between measured conditions and base conditions using dynamic (flowing) measurement methods.

For volume calculations, the desired result is Net Standard Volume ($N S V$). $N S V$ is the measured volume of the liquid adjusted for all conditions, instrument performance, and sediment and water quantities. Dynamic measurement of NSV is the product of two factors: Gross Standard Volume (GSV) and the Correction for Sediment and Water (CSW):

$$
\begin{equation*}
N S V=G S V \times C S W \tag{1}
\end{equation*}
$$

where:
$N S V=$ Net Standard Volume
$G S V=$ Gross Standard Volume
CSW $=$ Correction for Sediment and Water
The Correction for Sediment and Water, $C S W$, is the fraction of merchantable hydrocarbon liquid. It is the total volume of liquid at standard conditions, corrected for the volumetric fraction of sediment and water. Because NGLs are processed natural gases, having no sediment or water, this factor is either eliminated or set to unity. Therefore, $N S V$ is equal to $G S V$:

$$
\begin{equation*}
N S V=G S V \times 1=G S V \tag{2}
\end{equation*}
$$

$G S V$ is the measurement of the volume of liquid hydrocarbons and other associated liquids, corrected to standard conditions. NGL quantities are rarely, if ever, measured at standard conditions. So, corrections for pressure and temperature are applied to the liquid quantity measurements to get from operating conditions to standard conditions. The correction for the effect of pressure on the liquid $(C P L)$ and the correction for the effect of temperature on the liquid (CTL) correct the volume of the liquid from measured conditions to standard conditions.

[^0]The formulas and procedures used to calculate $C T L$ are beyond the scope of this paper. It is a fairly complex, equation-of-state calculation described in the API MPMS, Chapter 11, Section 2, Part 4 (a.k.a. API-11.2.4). ${ }^{[2]}$ This standard is concurrently published by GPA Midstream as GPA 8217-19. ${ }^{[3]}$ It is a function of the density and temperature of the liquid. It corrects the volume of the liquid from one temperature to another (e.g., the measured temperature to the base temperature or vice versa, depending on the application).

For most, if not all, transactions in the United States, hydrocarbon liquid volumes are converted from the volume at measured conditions to a volume at $60^{\circ} \mathrm{F}$. This is important for evaluating NGLs. There is a difference in the value of a barrel of the same quality of NGL at $60^{\circ} \mathrm{F}$ when compared to a barrel at $70^{\circ} \mathrm{F}$. The barrel of NGL at $60^{\circ} \mathrm{F}$ is more valuable because when the NGL at $70^{\circ} \mathrm{F}$ is allowed to cool to $60^{\circ} \mathrm{F}$, it will be less than a barrel in volume. Heat causes hydrocarbon liquids to expand. The difference in volume caused by a change in product temperature, especially with lighter NGLs, may be several percent. With large volumes or over long periods of time, the difference in the value of the product can become very large.

Likewise, pressure influences the volume and density of a hydrocarbon liquid. As more pressure is applied, the liquid is compressed and the volume decreases. Small changes in pressure do not affect the volume and density of NGLs as much as small changes in temperature.
$C P L$ is a function of the pressure, temperature, and density of the liquid. Although still beyond the scope of this paper, the calculation of $C P L$ is less complex than $C T L$. The formulas and procedures for calculating $C P L$ can be found in API-11 Section 2 Part 2 (a.k.a. API-12.2). ${ }^{[4]}$ For NGLs with a relative density greater than $0.637\left(60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}\right)$, some believe the formula for Part 2 should be extrapolated. Others believe the $C P L$ calculation in API MPMS Chapter 11, Section 1, (a.k.a. API -11.1) ${ }^{5}$ should be used. Depending on the application, one implementation procedure may be more accurate than the other. In every case and as necessary, the interested parties should agree how volume corrections for the effects of pressure will be handled and document the agreement.

While base temperatures may vary across nations and communities, the base pressure for liquid hydrocarbons is very common. Base pressure is the greater of atmospheric pressure or the saturation pressure of the liquid. Saturation pressure is the pressure exerted by a vapor in thermodynamic equilibrium with the condensed phase of the same substance at a given temperature in a closed system. Other names for this fluid property are equilibrium vapor pressure, equilibrium pressure, or vapor pressure.

In addition to the corrections for pressure and temperature, $G S V$ includes the meter's Indicated Volume ($I V$) and a correction for the meter's performance, the Meter Factor $(M F)$. Each indicated volume measurement (sample) made by the meter, is corrected for the liquid's temperature and pressure, and the meter's performance. These corrected measurements are summed together for a quantity transaction period, which is usually hourly.

$$
\begin{equation*}
G S V=\sum_{j=1}^{n}\left[I V_{j} \times M F_{j} \times C T L_{j} \times C P L_{j}\right] \tag{3}
\end{equation*}
$$

where:
$n \quad=$ Number of samples that make up the quantity transaction record, batch, or measurement ticket
$I V_{j}=$ Indicated Volume at the j th sample as j varies from 1 to n
$M F_{j}=$ Meter Factor at the j th sample as j varies from 1 to n
$C T L_{j}=C T L$ at the j th sample as j varies from 1 to n
$C P L_{j}=C P L$ at the j th sample as j varies from 1 to n

[^1]The volume indicated by the meter is called the indicated volume ($I V$). IV is the ending or closing meter reading $\left(M R_{c}\right)$ less the beginning or opening meter reading $\left(M R_{o}\right)$. Stated in equation form:

$$
\begin{equation*}
I V=M R_{c}-M R_{o} \tag{4}
\end{equation*}
$$

where:
$I V=$ Indicated Volume
$M R_{c}=$ Closing Meter Reading
$M R_{o}=$ Opening Meter Reading
The performance of a meter varies with flow rate and the liquid being measured. So, another correction term, the Meter Factor $(M F)$, is applied to the $I V$ to correct for the difference between the volume the meter is reading and the actual volume. The Meter Factor $(M F)$ is determined by the meter proving process.

$$
\begin{equation*}
M F=\frac{\sum_{j=1}^{n} I M F_{j}}{n} \tag{5}
\end{equation*}
$$

where:
$M F=$ Meter Factor
$I M F=$ Intermediate Meter Factor at the j th test as j varies from 1 to n
$n=$ Number of Proving Runs
When a meter is proved, several runs are made with a meter prover to satisfy the repeatability requirement of the meter, standard, or agreement. Each of these runs is called an Intermediate Meter Factor (IMF). The $I M F$ s are factors that correct the volume indicated on the meter to the volume of liquid that passed through the meter as measured by the meter prover.

Once it is determined there are enough $I M F$ s to provide an accurate representation of the repeatability of the meter and the evaluation of the $I M F$ s show the meter meets the repeatability requirements of API MPMS Chapter 13, the IMFs are averaged to determine the Meter Factor $(M F)$.

Given the data to generate these liquid volume calculation factors, a typical sequence for a dynamic volume calculation is:

1. Determine the Indicated Volume $(I V)$ by subtracting the opening meter reading $\left(M R_{o}\right)$ from the closing meter reading $\left(M R_{c}\right)$; see Equation (4)
2. Look up the current Meter Factor ($M F$)
3. Determine or look up the Density of the liquid at base conditions (ρ_{b}; base density), which is a function of the composition of the liquid or the measured density, temperature, and pressure of the liquid
4. Calculate the Correction for the Temperature of the Liquid (CTL), which is a function of the flowing temperature and base density of the liquid
5. Calculate the Correction for the Pressure of the Liquid ($C P L$), which is a function of the flowing temperature, flowing pressure, equilibrium vapor pressure at flowing conditions, and base density of the liquid
6. Calculate $G S V_{j}$ by multiplying $I V_{j} \times M F_{j} \times C T L_{j} \times C P L_{j}$ for measurement sample j
7. Repeat steps 1 through 6 for each sample from the meter for the entire Quantity Transaction Record and sum the results as GSV
8. Net Standard Volume (NSV) is equal to Gross Standard Volume (GSV)

MEASUREMENT BY MASS

Although it can be useful to measure NGLs by volume, there are many uncertainties. The Correction for the Temperature of the Liquid (CTL) is based on the density of the NGL. Density is not a very precise parameter to represent a potentially wide range of NGL compositions. Different mixtures behave differently. But if they have the same density, they are treated alike for $C T L$ calculations. Without composition information and consideration for volume shrinkage due to molecular mixing, it is more difficult to predict precise changes in volume due to changes in temperature. The current standard for correcting NGL
volumes for temperature, API-11 Section 2, Part ${ }^{[6]}$ (also, GPA $8217^{[7]}$), is based on an array of 12 reference fluids: nine pure components and three mixtures. These three mixtures are binary, which means they have two components: one mixture of ethane and ethylene and two mixtures of ethane and propane. Nine pure products and three binary mixtures do not provide a very broad range of reference data to formulate calculations for the wide array of combinations of hydrocarbons that make up typical NGL mixtures.

Additional uncertainty in the $N S V$ results from the calculation of the Correction for the Pressure of the Liquid (CPL). CPL is based on the difference between the liquid's measured pressure and its saturation pressure. Unless measured, a common method for determining the saturation pressure of a fluid is presented in API-11 Section 2, Part $5^{[8]}$. As with $C T L$, this standard is based on the density of the liquid, neglecting its composition. The standard acknowledges errors of more than 40% for natural gasoline mixtures around the upper density range of NGLs. It also affirms that relative density is not a highly precise parameter in predicting vapor pressures of widely variable NGL compositions.

For these and other reasons, the NGL measurement industry leans toward mass measurement. Knowing the fluid mixture and pure component densities allows for conversion from mass to component base volumes. Liquid density measurements are often applied to volume quantities to calculate mass quantities for fiscal accounting purposes. These are called indirect or implied mass measurements.

Indirect or implied mass is calculated by multiplying the volume measured at given conditions (temperature, pressure, and density) by the density at the same or very similar conditions. The units of measurement used to express the density of the NGL should correspond to the units of measurement used to express the volume and the mass. Otherwise, a unit correction may be required to convert the indirect or implied mass to the desired units of measurement.

$$
\begin{equation*}
m=N * I V * M F * \rho_{f} \tag{6}
\end{equation*}
$$

where:
m = Mass (Implied)
$I V=$ Meter's Indicated Volume
$M F=$ Meter Factor
$N=$ Unit Conversion Factor
$\rho_{f}=$ Density at flowing conditions

Other times, NGL is measured by mass on scales. Sometimes weight is used when mass is required. Technically, they are not the same. Confusion is added by the common use of vocabulary, such as "pounds" or "kilograms," to describe both mass and weight.

Mass is an extensive property of matter; a measurement of the amount of a substance. Weight is a measurement of force (force $=$ mass \times acceleration); the force that results from the action of gravity on the substance. Objects with the same mass (same number and kind of molecules) can have different weights, depending on where they are weighed. Different locations on the surface of the earth can have different gravitational forces.

There are many factors that affect the acceleration due to gravity at a specific point on the earth's surface, such as:

- Geology - the density of material beneath the location,
- Latitude - because the earth is an oblong spheroid (the diameter of the earth at the equator is greater than the diameter at the poles),
- Altitude - measurements farther away from the center of the earth tend to have less acceleration due to gravity,
- And other gravitational forces from the sun, moon, and local topography (Bouguer anomaly)

[^2]Therefore, it is best to use a measured value for the local acceleration due to gravity to convert weight to mass or use measurement devices calibrated to mass. Otherwise, formulas or geodesic data may be available for estimating the local acceleration due to gravity.

To find the mass of an object from its weight, a standard gravity ($980.665 \mathrm{~cm} / \mathrm{s}^{2}$ or approximately $32.1740 \mathrm{ft} / \mathrm{s}^{2}$) is related to the local gravity where the mass was weighed. The equation to convert weight to mass is:

$$
\begin{equation*}
m=W \times g_{0} \div g \tag{7}
\end{equation*}
$$

where:

$$
\begin{aligned}
& m=\text { Mass } \\
& W=\text { Weight } \\
& g_{0}=\text { gravitational constant }\left(980.665 \mathrm{~cm} / \mathrm{s}^{2} \text { or approximately } 32.1740 \mathrm{lb}_{\mathrm{m}}-\mathrm{ft} / \mathrm{lb}_{\mathrm{f}}-\mathrm{s}^{2}\right) \\
& g=\text { local acceleration due to gravity }
\end{aligned}
$$

For example, in Anchorage, Alaska, the acceleration due to gravity is about $32.24 \mathrm{lb}_{\mathrm{m}}-\mathrm{ft} / \mathrm{lb}_{\mathrm{f}}-\mathrm{s}^{2}$. If the net weight of a transaction is $1,350,495 \mathrm{lbs}$:
$m=1,350,495 \times 32.1740 \div 32.24$
$m=1,347,720$
Although it is technically correct to adjust the weight for the acceleration due to gravity, this is often ignored because the correction is frequently less than the tolerance of the scale.

MASS TO VOLUME CONVERSIONS

Although generally more accurate to measure by mass, custody of NGLs is often transferred by volume. Given a representative analysis, mass can be converted to component volumes. This is done by multiplying the total mass by the mass fraction of each component, giving the mass of each component. Dividing the mass of each component by the absolute density of the component yields the volume of the component at reference conditions. The absolute density of the components can be found in GPA $2145^{[9]}$. However, contracts may require the use of other standards or variations of GPA 2145 . NGLs with high concentrations of hexanes and heavier components may use properties determined from an extended analysis or measured from the residue of the distilled liquid. The procedures for converting the mass of a quantity of natural gas liquids to equivalent liquid volumes are found in GPA $8173^{[10]}$ (also, API-14, Section $4^{[11]}$).

NGL analyses may be presented in mole percent or volume percent, according to the calibration of the analytical instrument. To calculate component volumes from total mass, these analyses must first be converted to mass fractions. Mole percent is converted to mass fraction (see Table 1) by:

1) Dividing each mole percent by 100 to convert to mole fraction
2) Multiplying mole factions by the component's molar mass to get mass portion
3) Dividing component mass portion by total mass portion to get mass fractions
9. GPA 2145, "Table of Physical Properties for Hydrocarbons and Other Compounds of Interest to the Natural Gas Industry," 2016 Edition, GPA Midstream Association, Sixty Sixty American Plaza, Suite 700, Tulsa, OK 74135.
10. GPA 8173, "Method for Converting Mass of Natural Gas Liquids and Vapors to Equivalent Liquid Volumes," 1994 Edition, GPA Midstream Association, Sixty Sixty American Plaza, Suite 700, Tulsa, OK 74135.
11. Manual of Petroleum Measurement Standards, Chapter 14, "Natural Gas Fluids Measurement," Section 4, "Converting Mass of Natural Gas Liquids and Vapors to Equivalent Liquid Volumes," 1st Edition, 2006, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005.

Component	Mole Percent		Constant		Mole Fraction		Molar Mass ${ }^{1}$		Mass Portion of Mixture	Mass Fraction
Carbon Dioxide	0.08	\div	100	$=$	0.0008	\times	44.0095	$=$	0.035208	0.0008^{3}
Methane	2.65	\div	100	=	0.0265	\times	16.0425	$=$	0.425126	0.0098
Ethane	38.10	\div	100	=	0.3810	\times	30.0690	$=$	11.456289	0.2628
Propane	35.77	\div	100	$=$	0.3577	\times	44.0956	$=$	15.772996	0.3617^{4}
Normal Butane	9.56	\div	100	$=$	0.0956	\times	58.1222	$=$	5.556482	0.1275
Isobutane	4.78	\div	100	=	0.0478	\times	58.1222	=	2.778241	0.0637
Normal Pentane	1.91	\div	100	$=$	0.0191	\times	72.1488	$=$	1.378042	0.0316
Isopentane	0.94	\div	100	$=$	0.0094	\times	72.1488	=	0.678199	0.0156
Hexanes+	6.21	\div	100	=	0.0621	\times	88.7716^{2}	=	5.512716	0.1265
Totals	100				1.0000				43.593299	1.0000

Table 1 - Converting Mole Percent to Mass Fraction

Table 1 notes:
${ }^{1}$ Values for molar mass are from GPA 2145-16
${ }^{2}$ The "Hexanes+" molar mass value is a characterization from an extended analysis or GPA $2103{ }^{[12]}$ tests
${ }^{3}$ Component Mass Fraction of Mixture $=$ Component Mass Portion of Mixture \div Total Mass Portion of Mixture

$$
\begin{equation*}
w_{i}=M_{i} \div M_{\text {total }} \tag{8}
\end{equation*}
$$

where:

$$
\begin{array}{cl}
w_{i} & =\text { Component Mass Fraction of Mixture; formerly Weight Fraction } \\
M_{i} & =\text { Component Mass Portion of Mixture } \\
M_{\text {total }} & =\text { Total Mass Portion of Mixture }
\end{array}
$$

For example:

- Using Equation (8), CO_{2} Component Mass Fraction of Mixture $=\mathrm{CO}_{2}$ Component Mass Portion of Mixture \div Total Mass Portion of Mixture
- $0.0008=0.035208 \div 43.593299$
${ }^{4}$ The mass fraction of propane was adjusted to normalize the total mass fraction to unity
In a similar manner, component volume percentages can be converted to component mass fractions (see Table 2) by:

1) Dividing each volume percent by 100 to convert to volume fraction
2) Multiplying volume fractions by the absolute density of each component to get mass portion
3) Dividing component mass portion by total mass portion to get mass fractions
12. GPA 2103, "Tentative Method for the Analysis of Natural Gas Condensate Mixtures Containing Nitrogen and Carbon Dioxide by Gas Chromatography," 2003 Edition, GPA Midstream Association, Sixty Sixty American Plaza, Suite 700, Tulsa, OK 74135.

Component	Volume Percent		Constant		Volume Fraction		Absolute Density ${ }^{1}$		Mass Portion of Mixture	Mass Fraction ${ }^{3}$
Carbon Dioxide	0.05	\div	100	$=$	0.0005	\times	6.8129	$=$	0.003406	0.0008^{4}
Methane	1.56	\div	100	$=$	0.0156	\times	2.5000	$=$	0.039000	0.0097
Ethane	35.40	\div	100	$=$	0.3540	\times	2.9704	=	1.051522	0.2622
Propane	34.23	\div	100	$=$	0.3423	\times	4.2285	$=$	1.447416	0.3611^{5}
Normal Butane	10.87	\div	100	$=$	0.1087	\times	4.8706	$=$	0.529434	0.1320
Isobutane	5.23	\div	100	$=$	0.0523	\times	4.6925	=	0.245418	0.0612
Normal Pentane	2.43	\div	100	$=$	0.0243	\times	5.2584	$=$	0.127779	0.0319
Isopentane	1.18	\div	100	$=$	0.0118	\times	5.2120	$=$	0.061502	0.0153
Hexanes+	9.05	\div	100	$=$	0.0905	\times	5.5733^{2}	$=$	0.504384	0.1258
Totals	100				1.0000				4.009861	1.0000

Table 2 - Converting Volume Percent to Mass Fraction
Table 2 notes:
${ }^{1}$ Values for absolute density are from GPA 2145-16
${ }^{2}$ The "Hexanes+" absolute density is a characterization from an extended analysis or GPA 2103 tests
${ }^{3}$ Mass fractions results vary between mole analysis and volume analysis due to rounding
${ }^{4}$ Component Mass Fraction of Mixture $=$ Component Mass Portion of Mixture \div Total Mass Portion of Mixture [see Equation (8)]

For example:

- Using Equation (8), CO_{2} Component Mass Fraction of Mixture $=\mathrm{CO}_{2}$ Component Mass Portion of Mixture \div Total Mass Portion of Mixture
- $0.0008=0.003406 \div 4.009861$
${ }^{5}$ The mass fraction of propane was adjusted to normalize the total mass fraction to unity
From the mass fractions, the component volumes can be calculated (see Table 3). This is done by:

1) Multiplying each of the component mass fractions by the total mass measurement to get the mass of each component
2) Dividing the mass of each component by the absolute density of each component to get the volume of each component at base conditions

The resulting component volumes can be used for transaction evaluations and plant allocations. Other calculations may be necessary for operations, balancing, and reporting.

Component	Mass Fraction		Total Measured Mass (lbs)		Component Mass (lbs)		Absolute Density (lbs/gal) ${ }^{1}$		Component Volume (US gallons aEVP, 60° F)
Carbon Dioxide	0.0008	\times	1,347,720	$=$	1,078.176	\div	6.8129	$=$	158
Methane	0.0098	\times	1,347,720	$=$	13,207.656	\div	2.5000	$=$	5,283
Ethane	0.2628	\times	1,347,720	$=$	354,180.816	\div	2.9704	$=$	119,237
Propane	0.3617	\times	1,347,720	=	487,470.324	\div	4.2285	$=$	115,282
Normal Butane	0.1275	\times	1,347,720	$=$	171,834.300	\div	4.8706	=	35,280
Isobutane	0.0637	\times	1,347,720	$=$	85,849.764	\div	4.6925	=	18,295
Normal Pentane	0.0316	\times	1,347,720	$=$	42,587.952	\div	5.2584	$=$	8,099
Isopentane	0.0156	\times	1,347,720	$=$	21,024.432	\div	5.2120	$=$	4,034
Hexanes+	0.1265	\times	1,347,720	$=$	170,486.580	\div	5.5733^{2}	$=$	30,590
Totals	1.0000				1,347,720.000				336,258

Table 3 - Converting Mass Fraction and Mass to Component Volumes
Table 3 notes:
${ }^{1}$ Values for absolute density are from GPA 2145-16
${ }^{2}$ The "Hexanes + " absolute density is a characterization from an extended analysis or GPA 2103 tests

PHASE VOLUME CONVERSIONS

Mass accounting is much simpler and less uncertain. However, gas and liquid sales are often reported in volumes. Phase volume conversions, converting liquids to gas equivalents and gas to liquid equivalents, are common operational calculations in the NGL industry. These conversions aid in accounting, material balancing, and understanding plant efficiency.

Phase volume conversion calculations are accomplished with Theoretical Hydrocarbon Liquid Content (THLC) values. The $T H L C$ of a gas component is the product of its mole fraction and the inverse of its ft^{3} ideal gas per gallon liquid factor, divided by the compressibility of the gas, converted to the contract pressure base. In the United States, this factor is generally reported per 1,000 cubic feet of gas. In equation form:

$$
\begin{equation*}
T H L C=\frac{x_{i}}{z} \times V_{l} / V_{g} \times \frac{P_{b}}{P_{s}} \times 1000 \tag{9}
\end{equation*}
$$

where:

$$
\begin{aligned}
T H L C & =\text { Theoretical Hydrocarbon Liquid Content } \\
x_{i} & =\text { mole fraction of component } \\
Z & =\text { compressibility of gas mixture } \\
V_{l} / V_{g} & =\text { component gallon liquid } / \mathrm{ft}^{3} \text { ideal gas factor derived from the reciprocal of } \mathrm{ft}^{3} \text { ideal gas/gallon liquid } \\
P_{b} & \text { value from GPA 2145-16 } \\
P_{s} & =\text { rentract pressure base } \\
& \text { refence pressure base }
\end{aligned}
$$

This calculation can be found in GPA 2172-09 ${ }^{[13]}$ (API-14 Section 5). As an example, given a gas mixture with 0.0440 mole fraction propane $\left(x_{i}\right)$, compressibility of the gas (z) as 0.99673 , and a contract pressure base $\left(P_{b}\right)$ of 14.65 absolute psi, using Equation (9):

$$
T H L C=\frac{.0440}{0.99673} \times \frac{1}{36.391} \times \frac{14.65}{14.696} \times 1000=1.209
$$

Equation (10)
13. GPA 2172, "Calculation of Gross Heating Value, Relative Density, Compressibility and Theoretical Hydrocarbon Liquid Content for Natural Gas Mixtures for Custody Transfer," 2009 Edition, GPA Midstream Association, Sixty Sixty American Plaza, Suite 700, Tulsa, OK 74135.

In this example, a thousand cubic feet of gas which is 4.40 mole percent of propane potentially yields 1.209 gallons of liquid propane. The THLC is multiplied by the total volume of the mixture for the operational period, resulting in the theoretical liquid volume for the propane. This process is repeated for each of the components in the gas mixture, as required by the application. Often, only the values for hydrocarbon components with two or more carbon atoms (Ethane+) are converted to a total THLC because these are the components processed as NGLs.

Gas stream component THLC s provide a basis for transaction evaluation. Knowing the potential liquids to be generated from a gas stream helps to place a value on each of the gas streams entering a gas processing plant. The difference between the actual liquids generated by the plant and the potential liquids entering the plant over an operational period is a good indicator of the plant efficiency.

Invariably, some of the NGL components from the gas stream(s) exit the de-methanizer at the plant as residue gas. Methane is the primary component of the residue gas. Methane does not exist in a liquid state at base pressures and temperatures. For this reason, it is more efficient to convert the plant's liquid NGL product to gas than convert all gas to liquids for plant balancing purposes. The NGL converted to a gas equivalent volume, combined with the residue gas and gas used for processing, can be compared with the total inlet gas for a specific operational period. A gas equivalent factor can be found from the above THLC calculation process by taking the reciprocal of the total $T H L C$. Inlet gas can be compared to the sum of the gas equivalent liquid product volumes, plant residue gas, and gas use such as fuel, to balance the plant. This type of balance provides not only a reflection of the plant's efficiency, but also helps identify quantity and quality measurement errors.

These phase volume conversion calculations involve combining individual component values with accounting period quantities to get full station stream values. This provides high level information about quantity measurements. But again, these quantity calculations leave out the consideration for shrinkage due to molecular mixing. Therefore, NGL balances are often performed at the component level. The amount of each component of the gas coming into the plant is compared to the amount of that component going out of the plant as product, residue, and fuel to determine the loss (or gain) for each component.

Component level balancing can be done like volume balancing. The quantity of each component sold as product or residue or used a fuel can be compared to the quantity of each component coming into the plant. Component level balancing provides additional information about quality analysis and plant efficiency. At the same time, the results better correspond to the level at which transactions take place.

CONCLUSION

Different operations and methods of accounting will require different information. Some will need more detailed information than others, but all will require some form of quantity measurement. Some applications will lend themselves to volumetric measurement, where others are better suited to mass. These calculations associated with NGLs help to take those different types of raw measurements, calculate the various results operators and stakeholders require, providing the basis for NGL evaluations and transactions.

[^0]: 1. Manual of Petroleum Measurement Standards, Chapter 12, "Calculation of Petroleum Quantities," Section 2, "Calculation of Petroleum Quantities Using Dynamic Measurement Methods and Volumetric Correction Factors," July 1, 2021, Edition, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005.
[^1]: 2 Manual of Petroleum Measurement Standards, Chapter 11, "Physical Properties Data (Volume Correction Factors)," Section 2, Part 4, "Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E, and 60E," 2019 (2nd) Edition, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005.
 3 GPA 8217-19, "Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E, and 60E," 2019 Edition, GPA Midstream Association, 6060 American Plaza, Suite 700, Tulsa, OK 74135
 4 Manual of Petroleum Measurement Standards, Chapter 11, "Physical Properties Data (Volume Correction Factors)," Section 2, Part 2, "Compressibility Factors for Hydrocarbons: $0.350-0.637$ Relative Density ($60{ }^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$) and $-50^{\circ} \mathrm{F}$ to 140° F Metering Temperature," 2012 Edition, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005.
 5 Manual of Petroleum Measurement Standards, Chapter 11, "Physical Properties Data (Volume Correction Factors)," Section 1, "Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils," 2018 Edition, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005.

[^2]: 6 Manual of Petroleum Measurement Standards, Chapter 11, "Physical Properties Data (Volume Correction Factors)," Section 2, Part 4, "Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E, and 60E," $2^{\text {nd }}$ Edition, July 2019, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005.
 7 GPA 8217-19, "Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E \& 60E," 2019 Edition, GPA Midstream Association, Sixty Sixty American Plaza, Suite 700, Tulsa, OK 74135.
 8 Manual of Petroleum Measurement Standards, Chapter 11, "Physical Properties Data (Volume Correction Factors)," Section 2, Part 5, "A Simplified Vapor Pressure Correlation for Commercial NGLs," $1^{\text {st }}$ Edition, 2012, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005.

