# FUNDAMENTALS OF NATURAL GAS FLOW MEASUREMENT USING CLAMP-ON ULTRASONIC FLOW METERS

PRESENTED BY MARTIN DINGMAN

SIEMENS INDUSTRY, INC.

# TABLE OF CONTENTS

- Clamp-on ultrasonic gas flow measurement overview
  - Definitions & system components
  - Principles of operation
  - Flow Profile
  - Gas properties
  - Clamp-on benefits
  - Field installations / Applications
- Field installation information and required accessories
- Custody transfer
- Critical diagnostics
- Summary Q&A

## DEFINITIONS

Clamp-on – Refers to "Field Installed" meters

- External mounting of transducers designed for flexibility and convenience on existing piping
- Accuracy 0.5 1.0% of rate or better (Working with some unknowns)
- No flow calibration certificate

Custody Transfer (CT) – Refers to Custody Spool based meters

- Spool meter run with flow conditioning in accordance with AGA9
- Transducers can be external (Clamp-on) or insert (Chordal)
- Eliminates 'Field Installed' uncertainties
- Rigid, secure transducer mounting (Welded)
- Calibrated to Custody Transfer requirements (Calibration Certificate)

# **CLAMP-ON ULTRASONIC SYSTEM**





# ULTRASONIC CLAMP-ON SYSTEM COMPONENTS





**Mounting Frames** 



Ladder chain Mounting Straps

# ULTRASONIC CLAMP-ON SYSTEM COMPONENTS – TRANSDUCER MOUNTING

# **High Precision sensor mount features**

**316 Stainless** 

Compatible with sensor size:

- C & D High Precision
- E Universal

Single and Dual enclosure



# Dual Enclosure (Direct)



Dual Enclosure (Reflect Mount)



Single Enclosure (Reflect Mount)

# ULTRASONIC CLAMP-ON SYSTEM COMPONENTS – TRANSDUCER MOUNTING

# Magnetic Mounting features and applications:

# Features:

(Rare Earth) Nickel-plated Neodymium Iron Boron (NdFeB)

Resists a load of 20lbs min

HP & Universal size C, D, and E

Capable of accepting straps

Available in Stainless (special)

One size fits all - 7ME39600MD02

# Applications:

Temporary measurement

Large diameter pipes



## WHAT IS ULTRASOUND / ULTRASONIC?

- Sound whose frequency is above the upper limit of the range of human hearing (approximately 20 kilohertz)
- The speed at which sound waves (or ultrasound waves) propagate through a specific material or medium.
- Depends on density and medium temperature

# DEPENDNECE ON THE SPEED OF SOUND ON TEMPERATURE AND DENSITY





74°C / 165°F

### HOW WE GENERATE SOUND

- A sensor converts electrical energy into mechanical energy
- A sensor also converts mechanical energy into electrical energy
  - Piezoelectric Effect
- A sensor is both a transmitter and receiver



# There is a time difference. Why?





| $\emptyset \circ = \sin^{-1}(VOS / V_{phase})$ | Where: | VOS = Velocity of Sound in Gas                                                                            |
|------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------|
| T <sub>L</sub> = 2 * ID / (VOS * cos(Ø))       |        | V <sub>phase</sub> = Phase Velocity of Transducer<br>ID = Pipe Inside Diameter<br>T = Transit time in Gas |
| $V_F = V_{phase} * DT / (2 * T_L)$             |        | DT = Measured Transit-Time difference                                                                     |

PRINCIPLES OF OPERATION – WIDE BEAM







# WHEN TO CHOOSE DIRECT MODE VS. REFLECT MODE?



# PRINCIPLES OF OPERATION (REFLECT MODE)



# PRINCIPLES OF OPERATION (DIRECT MOUNT)



# PRINCIPLES OF OPERATION (DIRECT MOUNT - X-MOUNT)

# X-Mount produces Sonic transmissions at opposing angles, thus providing the benefits of Reflect Mount <u>crossflow</u> <u>immunity</u> when Direct Mount must be utilized.



PRINCIPLES OF OPERATION (REFLECT MOUNT) - 4 TRAVERSE - GAS MEASURMEMENT ON SMALLER LINE SIZES



# VOLUME CALCULATION

# V = K(Re) × $\left(\frac{\pi}{4 \times Di^2}\right)$ × v V = Volumetric Flow × × v V = Flow velocity × K(Re) = K factor from Reynolds number Di = Pipe inside diameter Pipe inside diameter N N N

# **REYNOLDS NUMBER**

| Turbulent flow<br>• Re > 4000                                   |                  |
|-----------------------------------------------------------------|------------------|
| Transition flow<br>• (laminar/ turbulent)<br>• 2300 < Re < 4000 | olds number bigg |
| Laminar flow<br>• Re < 2300<br>• (Re Reynolds number)           | Reyn             |

\*\*\*\*\*\*\*

### **REYNOLDS NUMBER**



# **INLINE VS. CLAMP-ON**





# SENSOR INSTALLATION – CHOOSING A LOCATION







### **PRINCIPLES OF OPERATION – FLOW PROFILE**

Most flow meter types require sufficient straight piping run upstream to produce a fully developed flow condition

**Out of Plane Elbows** 

Produces a full counter-propagating swirl that can persist for >40 diameters

**Single Elbow** 

Distorts the flow profile for a short distance before resuming to fully developed



PRINCIPLES OF OPERATION – PATH CONFIGURATIONS FOR IN-LINE TRANSDUCERS (CHORDAL)



In-line Transducers

# Dual / Four Paths

Increase flow sample averaging for greater precision

Benefits

- Greater cross-sectional averaging
- Improved accuracy
- Improved repeatability
- Adds redundancy
- More time in the flow stream

Wide Beam



Wide Beam samples approx. 20x the volume of a typical insert system with each transmission.









- Choose a location that provides at least 10 diameters of straight pipe upstream, and 5 downstream. More if possible
- Do not mount sensors immediately downstream of a pressure drop such as; expander, orifice plate, valves, intrusions, etc.
- Use the "Disturbed Flow" tool (in Pipe Settings) to program for actual pipe geometry when available straight pipe is limited
- Be sure pipe dimensions at selected location match meter programming!
- Remove flaky paint, rust, scale. Well bonded paint is OK and may be left alone
- · On horizontal pipes; avoid mounting sensors at the 12 or 6 o'clock positions
- · On vertical pipes, upward flow is preferred
- Do not mount sensors on (or opposite) pipe seams
- For pipes with internal liners; the liner material MUST be intimately bonded to the inner pipe wall to enable ultrasonic signal to conduct through the interface



8" carbon steel schedule 40 stock pipe





2003 7 23

Out of the box Performance at: •4D = -2.6% •9D = -1.7% •23D = -1.2% •44D = -0.1%






#### **PRINCIPLES OF OPERATION – BEAM BLOWING EFFECT**



Testing at TCC with flow conditioner ( $\blacklozenge$ ); except for the data point at 130 ft/sec ( $\bullet$ ), which was with flow conditioner removed.



# PRINCIPLES OF OPERATION – TYPICAL PERFORMANCE AND INSTALLATION CONSIDERATIONS

| Out-Of-Box accuracy:                                        | 0.5% - 1% for velocities above 0.3 m/s and >10 diameters straight run |
|-------------------------------------------------------------|-----------------------------------------------------------------------|
| Accurate pipe dimensions:                                   | Sensors matched to wall thickness                                     |
| Minimum Line Pressure:                                      | Approx 100 PSIG on steel, atmospheric on plastic                      |
| Pipe Size:                                                  | 2 inches to 52 inches                                                 |
|                                                             |                                                                       |
| Pipe Condition:                                             | Pipe should generally be in good condition                            |
| <ul><li>No scaling</li><li>Uniform wall thickness</li></ul> |                                                                       |
| <ul> <li>Smooth outer surface (ca</li> </ul>                | n mount over paint)                                                   |
| Temperature (Transducers):                                  | -40 F to 250 F                                                        |
| Flow Velocity:                                              | < 1 f/sec to >130 f/sec                                               |
| Repeatability:                                              | 0.25 % (based on ISO 11631)                                           |
| Gas Properties:                                             | Most gases, but less than $15\% \text{ CO}_2$                         |
| Pipe Damping Material:                                      | Improves Signal to Noise Ratio                                        |

# PRINCIPLES OF OPERATION – MINIMUM PRESSURE GUIDELINES

| Pipe | Size   | Minim   | um Pressur | e BARG (PS | IG): See Tra | ansducer Si | ze selection | table)   |
|------|--------|---------|------------|------------|--------------|-------------|--------------|----------|
| mm   | inches | B1H     | B2H        | C1H        | C2H          | D1H         | D2H          | D4H      |
| 50   | 2      | 7 (100) | 10 (150)   | 14 (200)   | 31 (450)     |             |              |          |
| 75   | 3      | 7 (100) | 7 (100)    | 14 (200)   | 17 (250)     |             | Not Recom    | mended   |
| 100  | 4      | 7 (100) | 7 (100)    | 7 (100)    | 14 (200)     | 28 (400)    |              |          |
| 150  | 6      |         | 7 (100)    | 7 (100)    | 7 (100)      | 24 (350)    | 35 (500)     |          |
| 200  | 8      |         |            | 7 (100)    | 7 (100)      | 21 (300)    | 28 (400)     | 35 (500) |
| 250  | 10     |         |            | 7 (100)    | 7 (100)      | 14 (200)    | 24 (350)     | 28 (400) |
| 300  | 12     |         |            |            | 7 (100)      | 10 (150)    | 21 (300)     | 24 (350) |
| 350  | 14     |         |            |            | 7 (100)      | 7 (100)     | 14 (200)     | 21 (300) |
| 400  | 16     |         |            |            | 7 (100)      | 7 (100)     | 10 (150)     | 17 (250) |
| 450  | 18     |         |            |            |              | 7 (100)     | 10 (150)     | 17 (250) |
| 500  | 20     |         | Not Recom  | mended     |              | 7 (100)     | 10 (150)     | 17 (250) |
| 550  | 22     |         |            |            |              | 7 (100)     | 10 (150)     | 17 (250) |
| 600  | 24     |         |            |            |              | 7 (100)     | 10 (150)     | 17 (250) |
| 650  | 26     |         |            |            |              |             | 10 (150)     | 17 (250) |
| 700  | 28     |         |            |            |              |             | 10 (150)     | 17 (250) |

# **Transducer Size Selection**

| Transducer | Pipe Wa  | all (mm) | Pipe Wal | l (inches) |
|------------|----------|----------|----------|------------|
| Size Code  | Wall Min | Wall Max | Wall Min | Wall Max   |
| B1H        | 2.0      | 3.0      | 0.08     | 0.12       |
| B2H        | 3.0      | 4.1      | 0.12     | 0.16       |
| C1H        | 4.1      | 5.8      | 0.16     | 0.23       |
| C2H        | 5.8      | 8.1      | 0.23     | 0.32       |
| D1H        | 8.1      | 11.2     | 0.32     | 0.44       |
| D2H        | 11.2     | 15.7     | 0.44     | 0.62       |
| D4H        | 15.7     | 31.8     | 0.62     | 1.25       |
| B3H        | 2.7      | 3.3      | 0.106    | 0.128      |
| D3H        | 7.4      | 9.0      | 0.293    | 0.354      |

#### DIFFERENCE BETWEEN IDEAL GAS AND REAL GAS

- In the real world ideal gas does not exists
- Real gas have attractions between particles and the particles have volume
- Real gas has ideal properties when:
  - Temperature is high (particle have enough energy to overcome any acctration)
  - Pressure is low (particles are so far apart their individual volume is insignificant)

# Ideal gas

- · Ideal gas has no definite volume
- · particles of the ideal gas have elastic collision
- intermolecular attraction forces do not present between molecules
- It is hypothetical gas that do not really exist in the environment
- Independent of factors like temperature, pressure and gas composition

# **Real gas**

- Real gas has definite volume
- particles of real have non-elastic collisions between molecules
- intermolecular attraction forces present between molecules
- Not a hypothetical gas that really exist in our environment
- Interacts with other gas and highly dependent

Actual (Gross) Volume Flow: 
$$Q_{ACT} = K(Re) x \left(\frac{\pi}{4 \times Di^2}\right) x v$$
  $Re = \frac{Di v \rho_{ACT}}{\eta}$ 

Standard Volume Flow:

$$Q_{Standard/Norm} = Q_{ACT} x \frac{P_{ACT}}{P_{BASE}} x \frac{T_{BASE}}{T_{ACT}} x \frac{Z_{BASE}}{Z_{ACT}}$$

Mass Flow:

$$Q_{\rm M} = Qact \ x \ \rho_{ACT} \qquad \rho_A$$

$$\rho_{ACT} = \rho_{BASE} x \frac{P_{ACT}}{P_{BASE}} x \frac{T_{BASE}}{T_{ACT}} x \frac{Z_{BASE}}{Z_{ACT}}$$

# **Typical Natural Gas Composition**

| • | Component        | (mole %) | Range (mole %) |
|---|------------------|----------|----------------|
| • | Methane          | 94.9     | 87.0 - 96.0    |
| • | Ethane           | 2.5      | 1.8 - 5.1      |
| • | Propane          | 0.2      | 0.1 - 1.5      |
| • | iso – Butane     | 0.03     | 0.01 - 0.3     |
| • | normal – Butane  | 0.03     | 0.01 - 0.3     |
| • | iso – Pentane    | 0.01     | trace - 0.14   |
| • | normal – Pentane | 0.01     | trace - 0.04   |
| • | Hexanes plus     | 0.01     | trace - 0.06   |
| • | Nitrogen         | 1.6      | 1.3 - 5.6      |
| • | Carbon Dioxide   | 0.7      | 0.1 - 1.0      |
| • | Oxygen           | 0.02     | 0.01 - 0.1     |
| • | Hydrogen         | trace    | trace - 0.02   |
|   |                  |          |                |

Note: Gas Found outside of the range provided is usually referred to as "out of spec gas"



#### **GAS PROPERTIES**



# GAS PROPERTIES - AGA8 / AGA10 COMPRESSIBILITY FACTOR AND SPEED OF SOUND (SOS)

| Con  | npressibility | factor (Z) |           |           |           |           |           |           |           |           |           |
|------|---------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|      |               |            |           |           |           | Pres      | sure      |           |           |           |           |
|      |               |            |           |           |           |           |           |           |           |           |           |
|      |               | 100000,0   | 1033333,3 | 1966666,6 | 2900000,0 | 3833333,3 | 4766666,5 | 5700000,0 | 6633333,5 | 7566666,5 | 8500000,0 |
|      | -20,0000      | 0,9968     | 0,9666    | 0,9359    | 0,9048    | 0,8733    | 0,8416    | 0,8101    | 0,7790    | 0,7491    | 0,7212    |
|      | -8,8889       | 0,9972     | 0,9712    | 0,9449    | 0,9184    | 0,8920    | 0,8657    | 0,8398    | 0,8146    | 0,7904    | 0,7677    |
| _    | 2,2222        | 0,9976     | 0,9750    | 0,9524    | 0,9298    | 0,9074    | 0,8854    | 0,8638    | 0,8430    | 0,8231    | 0,8044    |
| en   | 13,3333       | 0,9979     | 0,9783    | 0,9587    | 0,9394    | 0,9204    | 0,9017    | 0,8836    | 0,8662    | 0,8496    | 0,8342    |
| lpe  | 24,4444       | 0,9982     | 0,9811    | 0,9642    | 0,9476    | 0,9313    | 0,9154    | 0,9001    | 0,8855    | 0,8716    | 0,8587    |
| rat  | 35,5556       | 0,9984     | 0,9835    | 0,9689    | 0,9545    | 0,9406    | 0,9271    | 0,9141    | 0,9017    | 0,8901    | 0,8793    |
| ure  | 46,6667       | 0,9986     | 0,9856    | 0,9729    | 0,9606    | 0,9486    | 0,9370    | 0,9260    | 0,9155    | 0,9057    | 0,8967    |
|      | 57,7778       | 0,9988     | 0,9875    | 0,9764    | 0,9658    | 0,9555    | 0,9456    | 0,9362    | 0,9274    | 0,9191    | 0,9115    |
|      | 68,8889       | 0,9989     | 0,9891    | 0,9795    | 0,9703    | 0,9615    | 0,9531    | 0,9451    | 0,9376    | 0,9307    | 0,9243    |
|      | 80,0000       | 0,9991     | 0,9905    | 0,9822    | 0,9743    | 0,9667    | 0,9595    | 0,9528    | 0,9465    | 0,9407    | 0,9354    |
|      |               |            |           |           |           |           |           |           |           |           |           |
|      |               |            |           |           |           |           |           |           |           |           |           |
| Diag | nostic sour   | nd speed   |           |           |           |           |           |           |           |           |           |
|      |               |            |           |           |           | Pres      | sure      |           |           |           |           |
|      |               | 100000,0   | 1033333,3 | 1966666,6 | 2900000,0 | 3833333,3 | 4766666,5 | 5700000,0 | 6633333,5 | 7566666,5 | 8500000,0 |
|      | -20,0000      | 404,3500   | 398,3500  | 392,5800  | 387,1600  | 382,2400  | 378,0200  | 374,7600  | 372,7900  | 372,5100  | 374,3700  |
|      | -8,8889       | 412,6600   | 407,5400  | 402,7000  | 398,2300  | 394,2700  | 390,9500  | 388,4600  | 387,0100  | 386,8500  | 388,2400  |
| _    | 2,2222        | 420,7100   | 416,3400  | 412,2800  | 408,6000  | 405,4100  | 402,8100  | 400,9400  | 399,9400  | 399,9700  | 401,1900  |
| en'  | 13,3333       | 428,4900   | 424,7800  | 421,3800  | 418,3700  | 415,8100  | 413,8100  | 412,4400  | 411,8200  | 412,0500  | 413,2400  |
| Ъре  | 24,4444       | 436,0300   | 432,8800  | 430,0600  | 427,6100  | 425,5900  | 424,0800  | 423,1300  | 422,8300  | 423,2600  | 424,4800  |
| rat  | 35,5556       | 443,3400   | 440,7000  | 438,3700  | 436,4000  | 434,8400  | 433,7400  | 433,1500  | 433,1200  | 433,7200  | 435,0000  |
| ure  | 46,6667       | 450,4400   | 448,2400  | 446,3400  | 444,7900  | 443,6200  | 442,8700  | 442,5800  | 442,8000  | 443,5600  | 444,9100  |
|      | 57,7778       | 457,4500   | 455,5400  | 454,0200  | 452,8300  | 452,0000  | 451,5500  | 451,5300  | 451,9500  | 452,8600  | 454,2800  |
|      | 68,8889       | 464,0800   | 462,6100  | 461,4300  | 460,5600  | 460,0200  | 459,8400  | 460,0400  | 460,6500  | 461,6900  | 463,1700  |
|      | 80,0000       | 470,6400   | 469,4800  | 468,6000  | 468,0100  | 467,7300  | 467,7800  | 468,1800  | 468,9500  | 470,1000  | 471,6600  |



#### STANDARD VOLUME FLOW



#### MASS FLOW



# AGA8 TABLE

| AGA8 C  | alculations             |              |          |             |              |           |          |         |          |              |           |                  | ×      |
|---------|-------------------------|--------------|----------|-------------|--------------|-----------|----------|---------|----------|--------------|-----------|------------------|--------|
| Status: | Calculation Completed   | Successfully |          |             |              |           |          |         |          |              |           | Create AGA8 1    | Table  |
| Units   |                         | _            |          |             |              |           |          |         |          |              |           |                  |        |
| Press   | ure:                    | Temp         | erature: |             | Velocity:    |           |          | Density | /:       |              | Enthalpy: |                  |        |
| BARA    | 4                       | Celsi        | JS       | ~           | meters/secor | ıd        | $\sim$   | kg/M3   |          | ~            | kJ/kg     |                  | $\sim$ |
| Gas C   | omposition and Mole Fra | action %     |          |             |              |           |          |         |          |              |           |                  |        |
| Heliun  | n:                      | CO2:         | Etha     | ne:         | n-Butar      | e:        | n-He)    | kane:   |          | n-Nonane:    | 1         | Water:           |        |
| 0.0     |                         | 0.0          | 20       | 0           | 0.0          |           | 0.0      |         |          | 0.0          |           | 0.0              |        |
| Hydro   | ogen:                   | H2S:         | Prop     | ane:        | i-Pentar     | ie:       | n-Hep    | otane:  |          | n-Decane:    | (         | C0:              |        |
| 0.0     |                         | 0.0          | 0.0      | )           | 0.0          |           | 0.0      |         |          | 0.0          |           | 0.0              |        |
| Nitroo  | gen:                    | Methane:     | i-Bu     | ane:        | n-Penta      | ne:       | n-Oct    | ane:    |          | Argon:       |           | 02:              |        |
| 0.0     |                         | 80.0         | 0.0      |             | 0.0          |           | 0.0      |         |          | 0.0          |           | 0.0              |        |
|         |                         |              |          |             |              |           |          |         |          |              |           |                  | _      |
| No      | rmalize Clear           | Oper         | n Save   | Save        | As           |           |          |         |          |              | Total:    | 100.0            |        |
| Gas Pr  | essure and Temperatur   | e            |          |             |              |           |          |         |          |              |           |                  |        |
| Base    | Pressure:               | Minimum Pre  | ssure:   | Maximum Pre | ssure:       | Base Terr | perature | :       | Minimum  | Temperature: | Maxi      | mum Temperature: |        |
| 1.01    | 3                       | 5.0          |          | 40.0        |              | 15.5      |          |         | 20.0     |              | 40.0      | 0                |        |
| Z-Fa    | ctor                    |              |          |             | Pressure     | (BARA)    |          |         |          |              |           |                  |        |
| Tempe   | erature (deg C)         | 5.0000       | 8.8889   | 12.7778     | 16.6667      | 20.5556   | 24.4     | 444     | 28.3333  | 32.2222      | 36.111    | 1 40.0000        |        |
|         | 20.0000                 | 0.9863       | 0.9756   | 0.9649      | 0.9541       | 0.9434    | 0.9      | 326     | 0.9218   | 0.9109       | 0.9001    | 1 0.8894         | 1      |
|         | 22.2222                 | 0.9867       | 0.9763   | 0.9658      | 0.9554       | 0.9449    | 0.9      | 344     | 0.9239   | 0.9134       | 0.9029    | 9 0.8925         | 1      |
|         | 24.4444                 | 0.9870       | 0.9769   | 0.9667      | 0.9565       | 0.9463    | 0.9      | 361     | 0.9260   | 0.9158       | 0.9056    | 6 0.8955         | 1      |
|         | 26.6667                 | 0.9873       | 0.9775   | 0.9676      | 0.9577       | 0.9478    | 0.9      | 378     | 0.9280   | 0.9181       | 0.9082    | 2 0.8984         |        |
|         | 28.8889                 | 0.9877       | 0.9780   | 0.9684      | 0.9588       | 0.9491    | 0.9      | 395     | 0.9299   | 0.9203       | 0.9107    | 7 0.9012         |        |
|         | 31.1111                 | 0.9880       | 0.9786   | 0.9692      | 0.9598       | 0.9505    | 0.9      | 411     | 0.9318   | 0.9224       | 0.9132    | 2 0.9039         |        |
|         | 33.3333                 | 0.9883       | 0.9791   | 0.9700      | 0.9609       | 0.9518    | 0.9      | 427     | 0.9336   | 0.9245       | 0.9155    | 5 0.9066         |        |
|         | 35.5556                 | 0.9886       | 0.9797   | 0.9708      | 0.9619       | 0.9530    | 0.9      | 442     | 0.9353   | 0.9266       | 0.9178    | 8 0.9091         |        |
|         | 37.7778                 | 0.9888       | 0.9802   | 0.9715      | 0.9629       | 0.9542    | 0.9      | 456     | 0.9370   | 0.9285       | 0.9200    | 0.9116           |        |
|         | 40.0000                 | 0.9891       | 0.9807   | 0.9722      | 0.9638       | 0.9554    | 0.9      | 470     | 0.9387   | 0.9304       | 0.9222    | 2 0.9140         |        |
| Speed   | d of Sound (M/S         | SEC)         |          | 10.0000     | Pressure     | (BARA)    |          |         |          |              | 64.111    | 1 40 0000        |        |
| Tempe   | erature (deg C)         | 402 7026     | 8.8889   | 12.7778     | 16.6667      | 20.5556   | 24.4     | 1212    | 28.3333  | 32.2222      | 36.111    | 1 40.0000        | 4      |
|         | 20.0000                 | 404 2261     | 402.0606 | 390.3730    | 390.2307     | 205 0422  | 392.     | 0022    | 390.1777 | 300.3017     | 200 454   | 12 204 0224      | 1      |
|         | 24 4444                 | 405.6590     | 403.5520 | 401.4893    | 399.4737     | 397.5142  | 395.     | 6167    | 393 7893 | 392.0370     | 390.371   | 11 388 7000      | 1      |
|         | 26.6667                 | 407.0824     | 405.0324 | 403.0265    | 401.0705     | 399,1702  | 397      | 3321    | 395.5632 | 393.8710     | 392.263   | 37 390.7498      | 1      |
|         | 28,8889                 | 408,4967     | 406.5020 | 404.5525    | 402.6533     | 400.8104  | 399      | 0299    | 397.3186 | 395,6836     | 394.132   | 27 392,6742      | 1      |
|         | 31.1111                 | 409.9018     | 407.9612 | 406.0664    | 404.2226     | 402.4353  | 400.     | 7107    | 399.0551 | 397.4754     | 395.979   | 91 394.5740      | 1      |
|         | 33.3333                 | 411.2981     | 409,4101 | 407.5686    | 405.7785     | 404.0454  | 402.     | 3749    | 400.7733 | 399.2471     | 397.803   | 36 396.4500      | 1      |
|         | 35.5556                 | 412.6856     | 410.8490 | 409.0593    | 407.3216     | 405.6409  | 404.     | 0230    | 402.4737 | 400.9994     | 399.606   | 68 398.3031      | 1      |
|         | 37.7778                 | 414.0646     | 412.2780 | 410.5389    | 408.8520     | 407.2224  | 405.     | 6554    | 404.1568 | 402.7327     | 401.389   | 95 400.1340      | 1      |
|         | 40.0000                 | 415.4352     | 413.6974 | 412.0075    | 410.3701     | 408.7901  | 407.     | 2726    | 405.8233 | 404.4478     | 403.152   | 24 401.9434      | 1      |
|         |                         |              |          |             |              |           |          |         |          |              |           |                  |        |
| Calcu   | late Send Table         | Erase Flash  | Stop     | Print       | View Manua   | al        |          |         |          |              |           |                  | Exit   |



Gas and liquid installation comparison (beam angle)

| Parameter                   | Clamp-On<br>Water | Insert Gas<br>@ 15 barg | Clamp-On Gas<br>@ 15 barg | Units   |
|-----------------------------|-------------------|-------------------------|---------------------------|---------|
| Fluid Sound Velocity        | 1500              | 400                     | 400                       | m/sec   |
| Signal Amplitude            | 100               | 20                      | 1                         | mV      |
| Beam Angle                  | 30                | 45                      | 7                         | degrees |
|                             |                   |                         |                           |         |
| Transit-Time                | 234.6             | 1077.6                  | 767.7                     | usecs   |
| Delta-Time @ 10m/s velocity | 1.63              | 38.1                    | 5.34                      | usecs   |
| # cycles delta              | 0.70              | 4.57                    | 2.30                      | cycles  |

#### BENEFITS

- Wide range of pipe sizes, 10 mm to 10m (0.5" to 394")
- Large turn-down ratio (can be +/- 400:1)
- No pressure drop
- Bi-directional flow
- No cutting into the pipe or stopping the process required
- Clamp-on independent of pipe size (cost)
- Conductive and non-conductive liquids & gases
- No potential for leak point
- Low installation costs
- Retrofits easily
- Ideal as a replacement for other meters or for existing pipelines with no meters in place
- Maintains measurement over a wide range of liquids
- As accurate as conventional meter technologies
- Actual and Standard Volume flow measurement
- Dynamic Viscosity compensation, Pressure, & Temperature
- Pig Detector capability





#### BENEFITS

- Valve leak check It is easy to temporally install a pair of transducers for leak checking a suspect valve. If
  velocity is indicated, a complete installation can be performed to obtain further data. Low velocity, even a
  fraction of a foot per second, accumulates to significant value over time.
- Evaluating the performance of pigging or cleaning The clamp-on meter is useful to identify change effects for special field actions like cleaning. Base data can be obtained at four or more flow rates before cleaning and then the related tube can be cleaned, and another set of data will show the effect of cleaning.



# FIELD INSTALLATIONS



Pipeline Measurement

Storage Field Check Measurement (LAUF)

#### FIELD INSTALLATIONS



This installation had about 1-D Up & 1-D Down from the meter.

After four months of running a wide variety of flow rates it was determined the meter had a constant +2.5% bias from the system balance.

The meter was using the pipe anomaly table, but we still needed to do an adjustment.

Result: The user is very happy with the measurement.



Dirty Gas = Bad Measurement 12" pipe 0.1" build up Cross sectional change 113.09 to 111.22 =1.65%

# FIELD INSTALLATIONS



42" Field Clamp-On

#### **APPLICATION – GAS UNDERGROUND STORAGE**

# Challenge:

- Unable to stop flow and depressurize line
- Limited straight run.
- Poor outer diameter to wall thickness ratio
- OD = 221 mm (8 inch), WT = 22mm (0.86 inch )

### Product:

SITRANS FS230 4-path with gas software (option B50)

#### Main benefits:

- Non-intrusive
- Much lower installation cost than inline meters due to external sensors, which do not require cutting of pipes or interruption of flow
- High-quality diagnostic data
- Anomaly compensation



#### **APPLICATION – TRANSPORTATION GAS PIPELINE**

#### **Challenge:**

- Very large pipe size. OD = 1120 mm (44 inch)
- Hydrogen is injected near the installed sensors.
- The sensors are buried after installation

#### Product:

SITRANS FS230 4-path with gas software (option B50)

#### Main benefits:

- Much lower installation cost than inline meters due to pipe size.
- FS230 4-path system
- Hydrogen has no contact with the sensors
- The stainless-steel mounts provide a firm grip and are therefore perfect for buried installation.



#### **APPLICATIONS – FLARE GAS APPLICATION**

# Challenge:

- Pressure below atmospheric (vacuum)
- 14 PSI absolute / 0.96 bar absolute
- Very high flow velocities

# Product:

#### SITRANS FUG1010 2-Path

#### Main benefits:

- No potential for leak point
- Low installation costs
- No cutting into the pipe or stopping the process required







# Thickness Gauge





Рі Таре

#### FIELD INSTALLATION MEASUREMENT FORM



# FIELD INSTALLATION – APPLICATION DATA SHEET (ADS)

| SIEME                                  | ENS                              |                                                                                                        |              | Indu                   | stry        |                     |               |
|----------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|--------------|------------------------|-------------|---------------------|---------------|
| SITRANS                                | FS230 Gas F                      | ield Clamp-C                                                                                           | n Flow       | meter Appl             | icatior     | Data Shee           | t             |
| Email To: piabus                       | ales.industry@siemens            | com or FAX TO: 972-5                                                                                   | 22-4503      |                        |             |                     |               |
| Instructions: Na                       | wigate through the form          | using the TAB key or mo                                                                                | use. To sele | ct a checkbox, click w | ith mouse o | r press the SPACEBA | AR. To select |
| units, click and cl<br>Requestor Infor | hoose from drop-down m<br>mation | Customer Infor                                                                                         | mation       |                        | Ind-User In | formation           |               |
| Company<br>Name:                       | 1                                | Company<br>Name:                                                                                       | -            |                        | Company     | Name:               |               |
| Requestor<br>Name:                     | _                                | City:                                                                                                  |              |                        | City:       |                     |               |
| Phone:                                 | =                                | State*:                                                                                                |              | :                      | State*:     |                     |               |
| E-mail                                 |                                  | Country*:                                                                                              |              |                        | Country*:   |                     |               |
| Selected Par                           | t Numbers:                       |                                                                                                        |              |                        |             |                     |               |
|                                        |                                  |                                                                                                        |              |                        |             |                     |               |
| Process Info                           | rmation                          |                                                                                                        |              |                        |             |                     |               |
| Ore Date:                              | in adon                          |                                                                                                        |              |                        |             |                     |               |
| Gas Data:                              |                                  |                                                                                                        |              |                        |             |                     |               |
| Gas Type:                              | Natural Gas [                    | Process Gas D Oth                                                                                      | er Gas       | Amount of CO2:         | _%          |                     |               |
| Gas Condition:                         | Dry Wet                          | % Moisture:                                                                                            |              |                        |             |                     |               |
| If Known, inclu                        | de Mole fraction list:           |                                                                                                        |              |                        |             |                     |               |
| Methane:                               | Ethane:                          | Propane:                                                                                               | %            | Isobutane:             | ~           | n-Butane:           | %             |
| Isopentane:                            | n-Pentane:                       | n-Hexane:                                                                                              | %            | Carbon Dioxide:        | 20          | Nitrogen:           | %             |
| Hydrogen:                              | Water:                           | Oxygen:                                                                                                | %            | Hydrogen<br>Sulfide:   | e/          | Carbon              | %             |
| Other:                                 | 70                               | 20                                                                                                     |              | Sunde.                 | 20          | WOTOXIDE.           |               |
| Process Data:                          | %                                |                                                                                                        |              |                        |             |                     |               |
| resese balls.                          |                                  |                                                                                                        |              |                        |             |                     |               |
| Flow Range:                            | Min: Typical:                    | Max : Uni                                                                                              | its:         |                        |             |                     |               |
| Operation Press                        | ire: Min: T                      | voical: Max                                                                                            | Units:       | _                      |             |                     |               |
| op                                     |                                  | ,,,                                                                                                    |              | -                      |             |                     |               |
| Operating Tempe                        | erature: Min: Typic              | al: Max: Un                                                                                            | its:         |                        |             |                     |               |
|                                        |                                  |                                                                                                        |              |                        |             |                     |               |
| Installation                           |                                  |                                                                                                        |              |                        |             |                     |               |
| Pipe Data:                             |                                  |                                                                                                        |              |                        |             |                     |               |
| Actual Outside                         | Diameter:                        | nches □ mm <or:< td=""><td>Nominal</td><td>Pine Size:</td><td>l Inches</td><td>mm</td><td></td></or:<> | Nominal      | Pine Size:             | l Inches    | mm                  |               |
| , iona a outaido                       |                                  |                                                                                                        |              |                        | 1           |                     |               |
| Pipe Material C                        | hoose if Other:                  |                                                                                                        | Schedule     | Choose if Other.       |             |                     |               |
|                                        |                                  |                                                                                                        |              |                        |             |                     |               |
| Pipe Wall Thick                        | iness:                           |                                                                                                        | Class Ch     | oose if Other:         |             |                     |               |
| Liner Material                         | Not Applicable Oth               | ar                                                                                                     |              | Liner Thickness        | -           | Inches II mm        |               |
| Liner waterial.                        | not Appreabler Oth               | 51. <u> </u>                                                                                           |              | Liner Thicknes         |             |                     |               |
|                                        |                                  |                                                                                                        |              | 1                      |             |                     |               |

| SIEMENS                              |              |                        |                   | Indu                                 | stry                         |
|--------------------------------------|--------------|------------------------|-------------------|--------------------------------------|------------------------------|
| Flow Sensor Location:                |              |                        |                   |                                      |                              |
| Straight run in pipe<br>diameters:   | Up strear    | n:                     | Down s            | stream:                              |                              |
| Length of unobstructed pipe          | · 📕          | 🗌 🗆 Feet 🔲 Me          | ters              | Both sides of pipe a                 | ccessible? 🗌 Yes 📄 No        |
| Number of beams (single m<br>point)  | easuring     | 1 2 3 [<br>requested)  | 🗌 4 (Nun          | nber of beams will be i              | ecommended based on accuracy |
| Flow Sensor Data:                    |              |                        |                   |                                      |                              |
| Type: (Choose all<br>applicable)     | Subm         | ersible 🗌 Dedical      | ted 🗌 Po          | ortable Other:                       |                              |
| Sensor Type:                         | Stand        | ard Sensor (Alumin     | ium head)         | Corrosion Resist                     | ant (S.S. head)              |
| Sensor Mounting:                     | Stand        | ard mounting frame     | es 🗌 Sta          | inless Steel enclosure               | \$                           |
| Will sensors be located:             | Indoo        | rs 🗌 Outdoors          | Will se<br>a haza | nsors be installed in<br>rdous area? | Ves No                       |
| If yes, Agency and Area Ra<br>Other: | ting 🗌 FN    | VCSA <u>Choose</u> 🗌 ( | CÉNELEC           | Zone: Choose Prote                   | ction type: Choose           |
| Temperate / Pressure Data            | (if require  | d)                     |                   |                                      |                              |
| Check all that apply:                |              |                        |                   |                                      |                              |
| Available 4-20 mA tempera            | ure signal?  | ,                      | 🗌 Yes             | □ No                                 |                              |
| If No, Siemens Industry sup          | plied Temp   | erature?               | □ Yes             | □ No                                 |                              |
| Available 4-20 mA Pressure           | signal?      | T                      | ∐ Yes             |                                      |                              |
| Temperature Element                  | piled Press  | Clamp-On               | nsert             | 4-20mA input                         |                              |
| Pressure Transmitter (if req         | uired) :     | Pressure Range M       | lin:              | Typ: Max:                            |                              |
| Cables:                              |              |                        |                   |                                      |                              |
| Length from transduces to            |              |                        | ada an            | Torres Officer 14 Office             |                              |
| flowmeter.                           | 1            |                        | ICICIS            | Type. Choosen On                     | ci.                          |
| Transmitter                          |              |                        |                   |                                      |                              |
| Enclosure Spla                       | ish proof IF | P65, Nema 4x 🛛 F       | Flame/Exp         | losion proof (Nema 7)                |                              |
| desired.                             |              |                        |                   |                                      |                              |
| Input Power Choose                   |              |                        |                   |                                      |                              |
| Temperature at Flow<br>Transmiter    | Min:         | Тур: М                 | Max:              | 0 ⁰ F □ °C                           |                              |
| If yes, Agency and Area Ra           | ting: 🗌 FN   | VCSA Choose            | CENELEC           | Zone: Choose Pro                     | tection type: Choose         |
| Other:                               |              |                        |                   |                                      |                              |
| Unrestricted                         |              |                        |                   |                                      |                              |
| @ Sigmond Industry                   |              |                        |                   |                                      |                              |

|                      | 0.1.1            |                |                       | Communications: |  |
|----------------------|------------------|----------------|-----------------------|-----------------|--|
|                      | Output           | s requirea:    |                       | communications  |  |
| 🗆 4-20 mA Qty        | r 📃 🛛 🖸          | ] Pulse        | Qty:                  | Modbus          |  |
| 0-10V Qty:           | <b></b> (        | ] Frequency    | Qty:                  | RS-232          |  |
| Relay Qt             | y:               |                |                       | 1               |  |
| Output type (Pick    | One): Actual fic | w (uncorrect   | ed) 🗌                 |                 |  |
| OR Star              | idard volume or  | mass (Corre    | cted)                 |                 |  |
| Con                  | pensation type   | (only if corre | cted) 🔲 AGA 8 Detaile | d Other:        |  |
| Performance:         |                  |                |                       |                 |  |
|                      | % of rat         | e, Repeatabil  | ity: %                |                 |  |
| Desired<br>Accuracy: | 76 OTTAD         |                |                       |                 |  |





#### CUSTODY TRANSFER METER RUN IN ACCORDANCE WITH AGA NO.9 GUIDELINES

- 3<sup>rd</sup> party measurement and fabrication specialist built an engineered 16" meter run
  - The meter run was:
    - A precision honed pipe
    - Precise concentricity
    - Precise cross-sectional area
  - Spool was installed with:
    - Up stream flow conditioners (CPA Plate)
    - Dual path, Clamp-on ultrasonic gas meter
  - The assembly was then calibrated and linearized at CEESI on their natural gas pipeline.



#### AGA Report No. 9 sec. 6.5 Calibration Adjustment Factors

Calibration factors are applied to minimize any meter-bias offset:

- To meet AGA 9 accuracy, meters 12" and larger shall have a maximum error of +/- 0.70% as found
- <u>Piece-wise / Multi-point linear or (PWL) interpolation used to linearize the meter</u>

# Flow data after calibration and linearization

| Ceesi Flowrate<br>[ACFH] | Meter Flowrate<br>[ACFH] | Velocity<br>[ft/sec] | Percent Error<br>[%] |
|--------------------------|--------------------------|----------------------|----------------------|
| 308530.3                 | 308313.3                 | 69.9                 | -0.070               |
| 219754.6                 | 219700.3                 | 49.8                 | -0.025               |
| 44849.57                 | 44887.22                 | 10.2                 | 0.084                |

#### CEESI SPOOL AND METER ACCURACY DATA

Taking the unknown and making it known!





# Enhanced Diagnostics

Signal wave shapes Signal-to-noise ratio Signal strength

# BENEFITS

- Assessment of flowmeter status
- · Detailed information about the measured medium



#### **CRITICAL DIAGNOSTICS – FS200 UTILITY**



|                    | Description                                                                                                                                                     | Typical values |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| GAIN               | Receive amplifier gain value for the receive signal. Lower gain values indicate a stronger receive signal.                                                      | 0 to 50 dB     |
| SNR                | Signal to Noise Ratio of the signal. A high SNR indicates less baseline noise on the receive signal.                                                            | 20 to 80 dB    |
|                    | A dimensionless indication of how strongly correlated the upstream and downstream signal are to each other. A value of 1 represents the best correlation, 0 the |                |
| Correlation factor | worst.                                                                                                                                                          | 0.9 to 1.0     |
|                    | % of bursts accepted Based on various diagnostic input (i.e. correlation strength, gain level, SNR, etc.) the meter may reject specific up/down receive sets or |                |
| Accepted           | bursts.                                                                                                                                                         | 99 to 100 %    |
|                    | The percentage of accepted bursts is one measure of the application's health. Less than 100% generally indicates a disruption in the fluid, such as from        |                |
|                    | suspended solids or bubbles in the liquid.                                                                                                                      |                |
## **CRITICAL DIAGNOSTICS – AGA10 SPEED OF SOUND (SOS)**

| Process values                      |                |             | Unite       |             |        |           | P        | ath Flor | . Devia | tion |
|-------------------------------------|----------------|-------------|-------------|-------------|--------|-----------|----------|----------|---------|------|
| FIGCESS Values                      | Flow Pate:     | 6085 564    | m3/h        | 1           |        |           | 1 88     | aon 110  |         |      |
| Standard Volume Flow Pate: 6022 429 |                |             | Nm3/h       | 1           |        |           | 2.00     |          |         |      |
| Standard Vor                        | une 110% Rube. | 00221120    | 14110711    | ]           |        |           | 0.98-    |          |         |      |
|                                     |                |             |             |             |        |           | 0.0%     |          |         |      |
|                                     |                |             |             |             |        |           | -0.9%-   |          |         |      |
|                                     |                |             |             |             |        |           | -1.88    |          |         |      |
|                                     |                |             |             |             |        |           | Path # 1 | 2        | 3       | 4    |
| Path diagnostics                    | Path 1         | Path 2      | Path 3      | Path 4      | Path 5 | Pass/Fail | 10011 -  | Path VoS | Devia   | tion |
| RX Gain(up)                         | 13.750         | 15.000      | 15.000      | 21.250      |        | Pass      | 0.4%     |          |         |      |
| RX Gain(dn)                         | 13.750         | 15.000      | 15.000      | 21.250      |        | Pass      | 0.28-    |          |         |      |
| SNR (up)                            | 61             | 65          | 59          | 55          |        | Pass      | 0.20     |          |         |      |
| SNR(dn)                             | 56             | 62          | 58          | 55          |        | Pass      | 0.08     |          |         |      |
| Status:                             | Measurement    | Measurement | Measurement | Measurement |        | Pass      | -0.2%-   |          |         | - 1  |
| Correlation Q:                      | 0.99           | 1.00        | 0.99        | 0.97        |        | Pass      | -0.4%    |          |         |      |
| <pre>%Accepted:</pre>               | 100            | 100         | 100         | 100         |        | Pass      | Path # 1 | . 2      | 3       | 4    |
| Delta-Time nsec:                    | 2689.112       | 2671.622    | 2699.071    | 2652.008    |        |           |          |          |         |      |
| Flow & Vos                          |                |             |             |             |        |           | Units    |          |         |      |
| Flow Velocity:                      | 2.296          | 2.286       | 2.304       | 2.267       |        | Pass      | m/s      | 7        |         |      |
| VoS:                                | 1337.82        | 1341.68     | 1337.97     | 1342.47     |        | Pass      | m/s      | 7        |         |      |

|                    | Description                                                                                                                                                     | Typical values |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| GAIN               | Receive amplifier gain value for the receive signal. Lower gain values indicate a stronger receive signal.                                                      | 0 to 50 dB     |
| SNR                | Signal to Noise Ratio of the signal. A high SNR indicates less baseline noise on the receive signal.                                                            | 20 to 80 dB    |
|                    | A dimensionless indication of how strongly correlated the upstream and downstream signal are to each other. A value of 1 represents the best correlation, 0 the |                |
| Correlation factor | worst.                                                                                                                                                          | 0.9 to 1.0     |
|                    | % of bursts accepted Based on various diagnostic input (i.e. correlation strength, gain level, SNR, etc.) the meter may reject specific up/down receive sets or |                |
| Accepted           | bursts.                                                                                                                                                         | 99 to 100 %    |
|                    | The percentage of accepted bursts is one measure of the application's health. Less than 100% generally indicates a disruption in the fluid, such as from        |                |
|                    | suspended solids or bubbles in the liquid.                                                                                                                      |                |

## SUMMARY

- Clamp-on "Field Installed" Proper evaluation and tools can yield high accuracy (0.5% 1.0% or better)
- Clamp-on Ultrasonic flow meters can measure:
  - Actual Gross Volume Flow
  - Standard Volume Flow Compensated for Pressure and Temperature
  - Mass Flow Compensated for Pressure, Temperature, and Density
  - The Siemens Clamp-on Gas meter can correct for the theoretical flow profile based on actual piping
- Critical Diagnostics Vs, Signal Wave Shape, Gain, SNR, Correlation Factor, and Accepted
- Clamp-on Gas meters can meet AGA9 Custody Transfer (CT) meter package performance requirements