Determination of Hydrogen Sulfide and Total Sulfur in Natural Gas

Kurt Webber

Galvanic Applied Sciences

Background on H2S Measurements

Background on H2S

1ppm = .0001% Detectable by odor. (1/10,000 of 1%)

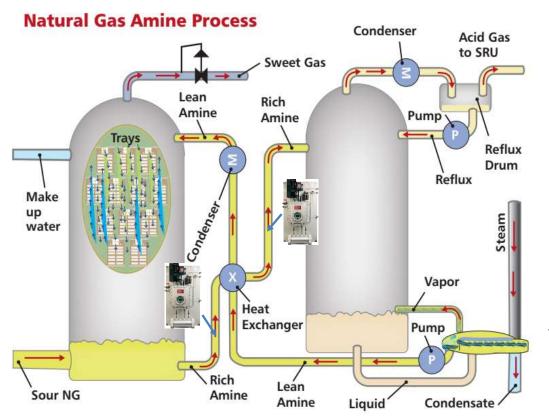
10ppm = .001% Allowable for 8 hours' exposure. (OSHA)

OVER 20ppm			PROTECTIVE EQUIPMENT WILL BE NECESSARY.	
100ppm	=	.01%	Kills smell in 3 to 15 minutes. May burn eyes and throat.	
200ppm	=	.02%	Kills smell rapidly. Burns eyes and throat.	
500ppm	=	.05%	Loses sense of reasoning and balance. Respiratory disturbances in 2 to 15 minutes. Needs prompt artificial resuscitation.	
700ppm	=	.07%	Will become unconscious quickly. Breathing will stop and death results if not rescued promptly. Immediate artificial resuscitation.	
1000ppm	=	.10%	Unconscious at once. PERMANENT BRAIN DAMAGE MAY RESULT UNLESS RESCUED PROMPTLY.	

Background on H2S and Sulfur

Name	Chemical Formula	Abbreviatio
Sulfides Hydrogen Sulfide Carbonyl Sulfide Dimethyl Sulfide Methylethyl Sulfide Diethyl Sulfide Diallyl Sulfide Dipropyl Sulfide Dibutyl Sulfide	H ₂ S COS CH ₃ SCH ₃ CH ₃ SCH ₂ CH ₃ CH ₃ CH ₂ SCH ₂ CH ₃ CH ₂ CHCH ₂ SCH ₂ CHCH ₂ CH ₃ (CH ₂) ₂ S(CH ₂) ₂ CH ₃ CH ₃ (CH ₂) ₃ S(CH ₂) ₃ CH ₃	H S COS DMS MES DES DAS DPS DBS
Mercaptans Methyl Mercaptan Ethyl Mercaptan Propyl Mercaptan iso - Propyl Mercaptan Normal - Butyl Mercaptan Secondary - Butyl Mercaptai iso - Butyl Mercaptan Tertiary - Butyl Mercaptan	CH ₃ SH CH ₃ CH ₂ SH CH ₃ CH ₂ SH (CH ₃) ₂ CHSH CH ₃ (CH ₂) ₃ SH n CH ₃ CH(SH)CH ₂ CH ₃ (CH ₃) ₂ CHCH ₂ SH (CH ₃) ₃ CSH	MeSH EtSH PrSH i-PrSH n-BuSH or Bi s-BuSH i-BuSH t-BuSH
Disulfides Carbon Disulfide Dimethyl Disulfide Methylethyl Disulfide Diethyl Disulfide Dipropyl Disulfide Tetrahydro Thiophene	CS ₂ CH ₃ S ₂ CH ₃ CH ₃ S ₂ CH ₂ CH ₃ CH ₃ CH ₂ S ₂ CH ₂ CH ₃ CH ₃ (CH ₂) ₂ S(CH ₂) ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ S	CS2 DMDS MEDS DEDS DPDS THT

H₂S and Sulfur Compounds


- •H₂S and other sulfur compounds occur naturally with oil and gas deposits around the world.
- •In general, sulfur compounds are considered undesirable and are removed from hydrocarbons.
- •H2S is colorless, toxic, highly reactive and flammable. Distinctive "rotten egg" odor at low concentration.

Amine stripping and sulfur recovery. Chemical absorbents.

Sulfatreat

Activated Carbon

ZnO

Monitoring the inlet and outlet of the absorber is critical to optimizing the acid gas removal process and realize significant reductions in costs.

e.g., contact temperature, pressure, total acid gas loading, NG and amine feed flow rates, location of lean amine feed point on the absorber structure, and amine fluid degradation.

Measurement in Refining

Liquefied Petroleum Gases (Propane/Butane)

- Product Quality
- Feedstocks

Fuel Gas

Emission Reporting

Sulfur Recovery

- Process H2S/SO2 Air Demand
- Acid Gas, Pit Gas, SO₂ Emissions

Vent Stack Emissions

- Total Reduced Sulfur
- •SO₂ Reporting

Measurement in Petrochemical

Ethylene / Propylene

- Product Quality
- Catalyst Protection

Liquefied Petroleum Gases

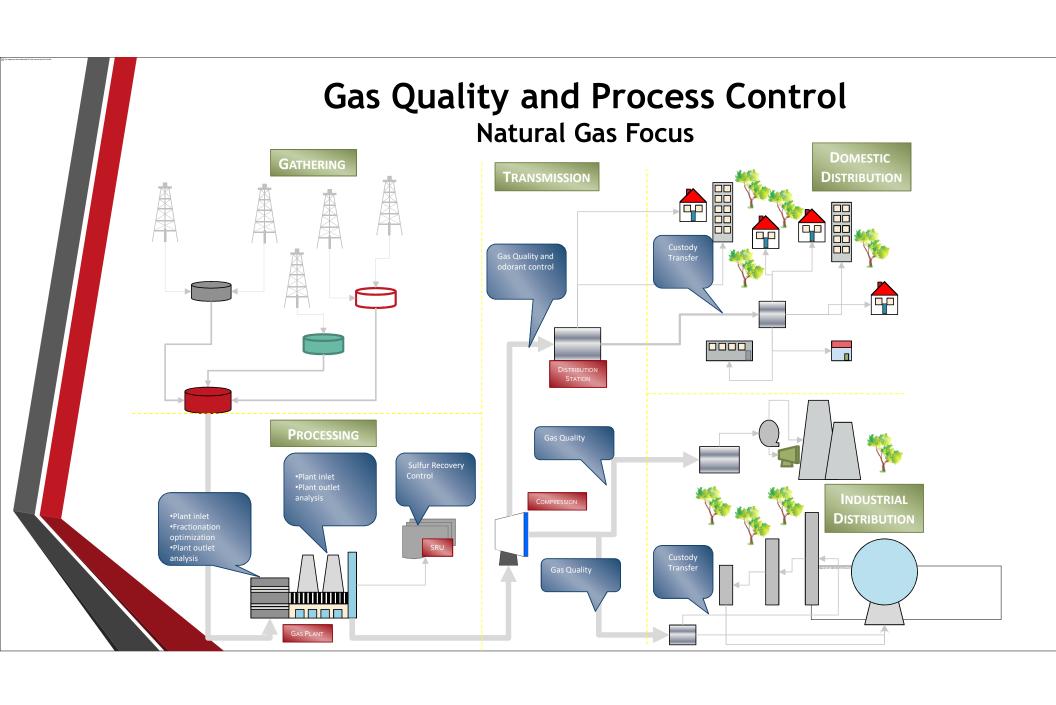
•Feed Stock - Catalyst Protection

Syngas

- H₂, CO, CO₂, CH₄
 Product Quality / Catalyst Protection
- Total Sulfur Measurement

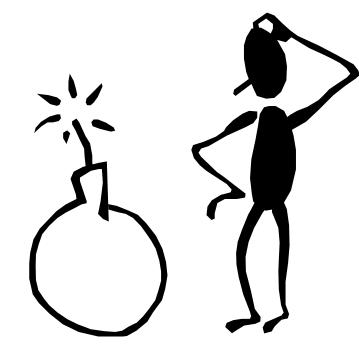
Fertilizer

- Catalyst Protection
- •Feedstock is generally Natural Gas Trace (ppb) H₂S and TS

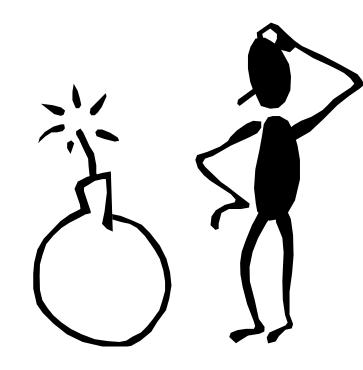

Measurement in Natural Gas

Pipeline

- Product Quality / Custody Transfer
 - -Tariff Levels- U.S.- 4 ppm, Canada- 16 ppm, EU- 3.5 ppm
- •Odorants Total Sulfur analysis to ensure gas is properly odorized.
- Corrosion Control
 - -H₂S measurement


Production – Gas Plant

- Product Quality, Plant Outlet
- Plant Inlet
 - -High concentrations of H₂S
- •Flare Lines
 - -High concentrations of H₂S
 - -Environmental regulations


Why Some Gas Compounds like H2S Are Difficult To Monitor?

- •Sample Concentration and Chemistry Concerns
- •Sample Transport and Handling vs Analysis
- Process Conditions- Pressure, Temp, Flow Sample Return
- •Reporting Requirements- Accuracy, Time...
- Analysis Technique- Optical, Color, GC, TDL
- Budget, Resources, Cost Versus Analysis Time

Sample Chemistry

- Concentration (%, ppm, ppb, ppt)
- Sample state
- Polar versus Non-Polar
- Solubility
- Reactivity
- Toxicity and Safety
- Corrosive

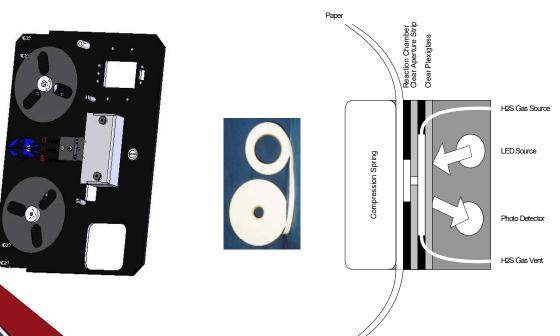
Sample Transport and Handling

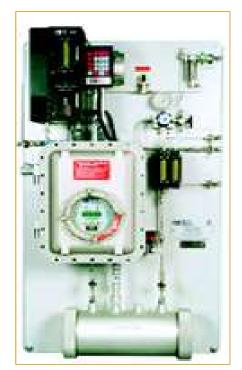
 Materials of Construction for Wetted Surfaces

Hastelloy, Inconel, Teflon, SilcoSteel Monel, Sulfinert, Stainless Steel

Process Temp./Pressure

- Distance to Analyzer (fast loop?)
- Heated Lines and Enclosures
- Sample Exhaust (process, flare, air)


Common Analysis Techniques for H2S/Sulfur Compounds


- Paper Tape (Colorimetric)
- Ultraviolet Spectroscopy (UV)
- Gas Chromatography (GC)
- Tuneable Diode Laser (TDLAS)

Paper Tape

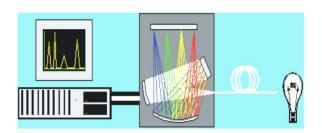
An advanced colorimetric sensor that continuously measures the rate of darkening caused by the reaction of H2S on white tape impregnated with lead acetate in accordance with ASTM

methods D4084-94, D4323-97 and D4468-95.

Principle of Operation

- $H_2S + Pb(CH_3COO)_2$ PbS + H_2O
- Lead Sulfide (PbS) is left on tape as brown stain
- Rate of stain formation is proportional to amount of H₂S present
- Rate of stain is monitored by photodiode sensor
- Lead Acetate Tape is 100% H₂S specific
- No interferences

Paper Tape Advantages:

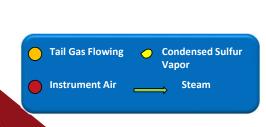

- Highly sensitivity
- No interferences
- Low cost to acquire and low cost of ownership
- Simple technology
- •H2S and or Total Sulfur (reduction path- H2S)
- Multipoint capability

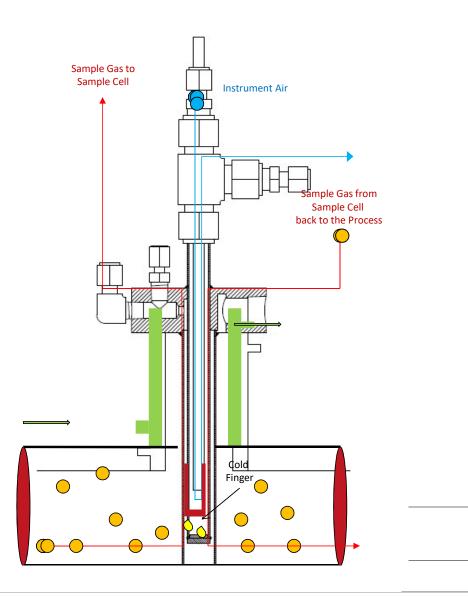
Disadvantages:

- Expendables
- Speed of analysis
- Dynamic range
- Temp./Humidity

Ultraviolet Spectroscopy (UV)

Absorbance, Fluorescence, Diode Array, Non-dispersive UV spectroscopy is type of absorption spectroscopy in which light of ultraviolet region (200-400 nm.) is absorbed by the molecule. Absorption of the ultraviolet radiations results in the excitation of the electrons from the ground state to higher energy state. The energy of the ultraviolet radiation that is absorbed is equal to the energy difference between the ground state and higher energy states.

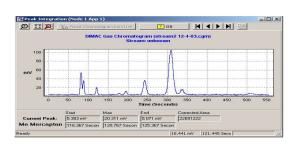

Ultraviolet Advantages:


- Speed of measurement
- Dynamic range
- moderate cost to acquire and low cost of ownership
- •H2S and some sulfur compounds (oxidation path-SO2)
- Multipoint capability

Disadvantages:

- •UV source lifetime
- Moderate sensitivity with absorbance
- Interferences

UV Sample Probe in Klaus SRU



Gas Chromatography (GC)

A chemical analysis instrument for separating chemicals in a complex sample. A gas chromatograph uses a flow-through narrow tube known as the column, through which different chemical constituents of a sample pass in a gas stream (carrier gas, mobile phase) at different rates depending on their various chemical and physical properties and their interaction with a specific column filling, called the stationary phase. As the compounds exit the column they are detected and identified.

Gas Chromatography Advantages:

- Speciation of compounds
- Moderate complexity
- Low to moderate cost to acquire
- •H2S as well as all sulfur compounds/or in addition to other compounds
- Multipoint capability

Disadvantages:

- Speed of analysis
- Sensitivity is detector dependent (chemiluminescence vs TCD)
- Carrier gas supply (helium, hydrogen)
- Cost of ownership and maintenance

Tunable Diode Laser (TDLAS)

TDLAS uses a tunable near infrared Laser. A Tuneable Diode Laser is a type of semiconductor based laser that can be tuned to optically select a very specific wavelength (or color) of light. The laser emits near-infrared radiation with a line width less than 0.003 cm-1, which is narrower than molecular absorption line widths (typically 0.1 cm-1 at atmospheric pressure). Tuning to a specific wavelength is done by varying the diode temperature and the diode current going through it.

Tuneable Diode Laser Advantages:

- Multi-compound capability
- Speed of analysis
- Dynamic range
- Multipoint capability

Disadvantages:

- Sensitivity to H2S in near infrared
- Repeatability for H2S varies by sample type
- High cost to acquire
- No speciation of sulfurs

Conclusions:

- Put Real Effort Into the Sampling and Calibration System
- •Get as Close to the Process as Possible
- •H₂S, H₂S/TS or other compounds/H₂S
- •When all Criteria Appear Equal the Most Sensitive Analyzer is Usually Best
- More Time Makes for Better Decisions
- Multipoint-Sampling, Cost Versus Time

GALVANIC

APPLIED SCIENCES

1.866.252.8470 | info@galvanic.com www.galvanic.com