Fundamentals of Pressure and Temperature Measurement Jeff Goetzman CenterPoint Energy. 1111 Louisiana Houston, Texas 77002 The correct measuring of Pressure and Temperature is one of the most important elements in the accurate measurement of Natural Gas. The basic principles were established many years ago by two men, Robert Boyle an Anglo Irish philosopher, chemist, and physicist and Jacques Charles, a French Inventor, scientist and mathematician. Since we are discussing Fundamentals we will try to keep it as simple possible. #### **Boyles Law** In 1662 Robert Boyle first published what today is known as Boyles Law. This law can be simply stated as: For a fixed amount of ideal gas kept at a fixed temperature, Pressure [P] and Volume [V] are inversely proportional. So as pressure is raised more gas can occupy the same space. ## **Simple Pressure Factor** Using the principle of Boyles Law we can easily calculate a simple pressure factor to be used in calculating changes in volume caused by changes in pressure. Fp=(GaugePressure in psig +Atmospheric Pressure in psia)/Base Pressure in psia Our Base Pressure is commonly stated in our Gas Contracts. It's the pressure that we have agreed to base all purchases and sales on for the contract area. For our example we will use 14.95 psia as our base pressure. Our Atmospheric Pressure is the standard atmospheric pressure for the Region. It's also stated in the Gas Contracts. For our example we will use 14.7 psi for our atmospheric pressure. Our Gauge Pressure (psig) is the gas pressure we read on the meter with an accurate gauge. For our example we will use the common residential delivery pressure of .25 psi. ## Calculation at .25 psig Now let's plug our numbers into our formula: Fp = (.25psig+14.7atm) / 14.95base For this example the answer would be 1.0. Therefore anytime we measure at these factors we can just simply read the meter index difference as the volume. ## Calculation at 5.0 psig In this example we will keep everything constant except pressure. Let's say the customer called and need more pressure for a new pool heater or standby generator they installed. As a result a Service Tech was dispatched and raised the pressure on the meter to 5.0 psig. This requires that we use a new pressure factor. Fp = (5.0psig+14.7atm) / 14.95 base For this example our answer is 1.3177. So to obtain a volume corrected for pressure we must now multiply our meter index difference by 1.3177. #### <u>Supercompressibility</u> Of course nothing in life is ever that easy. All gases deviate slightly from Boyles Law. The volume of gas at higher pressures is typically higher than the theoretical pressure. As such we must calculate a Supercompressibility Factor (Fpv) to make this correction. This factor is increasingly important at higher pressures and lower temperatures. The most common current standard for the calculation of Supercompressibility is AGA8. It's a somewhat complex formula so in the interest keeping things fundamental we won't delve into the details here. The best way to handle Supercompressibility calculations is to use one of the commonly available AGA 3 or AGA7 calculation programs which have Fpv calculation imbedded in them. ### **Example of Fpv Effect** At the 5.0 psig pressure in our example above the Fpv Factor is . At 25 psig it doesn't change much. However at 500 psig it changes significantly to #### **Charles Law** Up to this point we have just discussed the effect pressure has on volume. In 1772 Jacques Charles began his unpublished work on what is now referred to as Charles Law. It addressed the effect that temperature has on volume. This law can be simply stated as: At constant pressure a volume of a given mass of ideal gas increases or decreases by the same factor as it's temperature on the absolute temperature scale. That is as temperature increases the gas expands and as temperature decreases the gas contracts. ## **Simple Temperature Factor** Using the principles of Charles Law we can calculate a simple Temperature Factor (Ft) Ft=(BaseTemperature+460)/(Flowing Termperature+460) Our Base Temperature is the temperature we have agreed in our Gas Contract to sell gas at. When we deviate from that temperature we must correct for that deviation. By far the most common base temperature is 60 degrees Fahrenhiet so that's what we will use in our example. The Flowing Temperature is the actual temperature of the gas as measured with approved AGA methods. For our example we will use 40 deg F. ### Calculation at 40 deg F Ft = (60 deg F base + 460) / (40 Deg F + 460) For this example our answer would be 1.0400. So to correct our volume for temperature we would multiply our Acf volume by this factor. Since the temperature has caused the gas to contract we can fit more gas into the same space. Calculation at 80 degree F Ft = (60 deg F base + 460) / (80 Deg F + 460) For this example our answer would be .9629. So to correct our volume for temperature we would multiply our Acf volume by this factor. Since the temperature has caused the gas to expand we can fit less gas into the same space. Flowing Temperatures above our Base Temperatures will have Ft lower than 1.0. Flowing Temperatures above our Base Temperatures will have Ft above 1.0. As a rule of thumb, there is about a 1% change in volume for each 5 deg F change in temperature. # Methods of Calculation or Pressure and Temperature Correction The following are the most used today: - EFM Using a field device such as a Flow Computer or Electronic Corrector to read the process variables, hold the configuration parameters and perform an internal calculation. - 2. Fixed Factor Holding a variable such as pressure constant and making the pressure correction in the accounting / billing system. - Mechanical Such as Pressure Compensated Indexes which have gear ratios designed to compensate for a fixed pressure. Also Temperature Compensated Indexes that use bi-metallic elements to compensate for changes in temperature. #### **Kev Elements** - Make all Measurements according to AGA and Manufacturers Guidelines. This is very important in meter station design as well as installing Measurement devices in the field. - Select accurate and reliable Measurement devices. - Formulate and adhere to a good calibration program. - Properly train your Measurement Staff. ## Formulate a good Calibration Plan. This can vary from company to company based on factors such as Staffing, Geographic area coverage, volume, Gas Contracts, etc. There is no "one size fits all". Some important elements to consider: - Understand the accuracy requirements stated in your Gas Contracts. What is my goal in terms of accuracy? - Possible financial impact. What is the value of .25% of the Gas we measure? - Consider the size of your Field Tech Staff and the number of metered locations. How often will this allow you to perform calibrations at locations? - Evaluate risk at each location in terms of volume and Contract. What does your Contract State in terms of volume adjustment requirements? - How do you determine what accuracy the Field Tech calibrates to? You can use some good error calculators for this. - Choose accurate, easy to use and reliable calibration equipment. Digital is preferred as they are read more often without error. As a general rule of thumb calibration equipment should be four times as accurate as the device it is calibrating. - How often do you verify your calibration equipment? Can you trace it back to NIST Standards? - Your calibration program will never be better than your documentation. How will you accurately document all your important calibration information? #### **Summary** Fundamentals are always the key to success. You can't do Algebra without the fundamentals of addition, subtraction, multiplication and division. Similarly without the proper Pressure and Temperature Measurement fundamentals you can't have a successful Measurement Program. Properly addressing the fundamentals will install the proper building block to success. #### **Terms** **Acf** – Actual Cubic Feet. Also referred to as the "uncorrected volume" or "Index Volume". Volume measured by a meter before it's corrected for temperature **PSIG** – Pound per square inch gauge. The pressure above atmospheric pressure. **PSIA** – Pounds per square inch absolute. Gauge pressure + atmospheric pressure. If you have a gauge pressure of 5 psig at atmospheric pressure of 14.7 you have 19.7 Psia