USE OF EQUATIONS OF STATE (EOS) SOFTWARE

Donald P. Mayeaux

President A+ Corporation, LLC 41041 Black Bayou Rd. Gonzales, LA USA

Introduction

Proper sample conditioning is essential to providing a representative sample of natural gas to the analyzer. Sample conditioning consists of extracting a sample from a process stream, transporting it to an analyzer, and conditioning it so that it is compatible with the analyzer. Conditioning generally consists of controlling the gas temperature, pressure, and flow rate. It also includes the removal of contaminates which may alter the sample composition and/or damage the analyzer. It is imperative that the gas sample composition is not altered or distorted during the conditioning process.

Equations of State (EOS) software programs are useful tools for modeling the behavior of natural gas as it flows through a sample system. With the use of an EOS program one can determine if conditions in a particular sample conditioning system are conducive to the proper sampling of a specific natural gas composition.

EOS software can be useful to the engineer or technician during the design, operation, and maintenance of a natural gas sampling system. This paper will discuss the types of information an EOS program can provide and how this can be utilized to solve common sample conditioning problems.

Equations of State (EOS) software

The EOS expresses the mathematical relationships which exist between the pressure, volume, and temperature of a fluid which permit the prediction of real behavior. There are several equations of state utilized by the natural gas industry. Two common ones are Peng – Robinson and Soave – Redlich – Kwong (SRK).

The typical EOS software package utilizes these equations to provide a vast amount of information for a given gas composition.

The following are examples of information which they can provide that is valuable to the analyzer engineer or technician.

- The hydrocarbon dew point temperature
- A phase diagram
- Physical properties of a complex gas mixture
- The composition, heating value (BTU content), and physical properties of both phases of a gas and liquid which are in equilibrium
- The heating value of a gas sample stream

The above information is required to answer practical questions such as:

- Is liquid entrained in the sample source?
- What is the dewpoint temperature of the sample gas at source pressure?
- Will condensation occur in the sample system?

Using a typical EOS software package

Entering the composition

The first step is to enter a gas composition (Figure 1). Components are selected from a library consisting of hundreds of components. A favorite alternate is to select a template containing only the components normally found in natural gas. The molar ratio (percentage) of each component is entered. This information is obtained from historical data, previous analysis, or current analysis depending upon the task at hand.

ile	<u>E</u> dit <u>L</u> ibrary <u>H</u> elp							<u>C</u> omponents	Flg	sh Diagrams	Options
	Complete List	Con	Common Li <u>s</u> t Hydrocarbons			Inorganics			Water Saturate	Hormalize	
lo	llame	Formula	Mol Wgt	Tc	Pc	Zc	Omega		Ho	Components	Molar Ratios
1	Bromochlorodifluoromethane	CBrCIF2	165.365	426.1	42.54	0.2950	0.1870		1	Methane	75.000
2	Bromotrichloromethane	CBrCl3	198.273	606.0	49.70	0.2800	0.1920		2	Ethane	12,500
3	Bromotrifluoromethane	CBrF3	148.910	340.1	39.72	0.2810	0.1730	-			
4	Dibromodifluoromethane	CBr2F2	209.816	478.0	53.30	0.3340	0.2000		3	Propane	6.000
5	Chlorotrifluoromethane	CCIF3 CNCI	104.459	302.0 449.0	39.46	0.2830	0.1800		4	Isobutane	1.000
67	Cyanogen Chloride Dichlorodifluoromethane	CCI2F2	61.470 120.913	384.9	59.90 41.25	0.2620	0.3200				
8	Phosaene	CCI2F2	98,916	455.0	41.25	0.2800	0.1800		5	n-Butane	1.600
9	Trichlorofluoromethane	CCI3F	137,368	433.0	44.08	0.2790	0.1840		6	Isopentane	0.180
10	Carbon Tetrachloride	CCI4	153.822	556.4	45.60	0.2730	0.1930				
11	Carbonyl Fluoride	CF20	66.007	297.0	57.60	0.3290	0.2830		7	n-Pentane	0.240
12	Carbon Tetrafluoride	CF4	88.005	227.5	37.39	0.2770	0.1860		8	n-Hexane	0.146
13	Tribromomethane	CHBr3	252.731	696.0	60.90	0.3010	0.1560		9	- Heuters	
14	Chlorodifluoromethane	CHCIF2	86 468	369.3	49.71	0.2690	0.2190			n-Heptane	0.068
15	Dichlorofluoromethane	CHCI2F	102.923	451.6	51.84	0.2710	0.2070		10	n-Octane	0.048
16	Chloroform	CHCI3	119.377	536.4	54.72	0.2930	0.2130		11	n-Nonane	
17	Trifluoromethane	CHF3	70.014	298.9	48.36	0.2590	0.2670				0.012
18	Triiodomethane	CHI3	393.732	794.5	53.12	0.2810	0.1930		12	n-Decane	0.006
19	Hydrogen Cyanide	CHN	27.026	456.6	53.91	0.1970	0.4100		13	Carbon Dioxide	0.400
20	Bromochloromethane	CH2BrCl	129.384	557.0	68.10	0.2760	0.2200				
21	Dibromomethane	CH2Br2	173.835	611.0	71.70	0.3150	0.2100		14	Nitrogen	2.800
22	Chlorofluoromethane	CH2CIF	68.478	424.9	51.31	0.2300	0.1990		_	T-1-1 M-1	
23	Dichloromethane	CH2Cl2	84.932	510.0	60.80	0.2650	0.1920			Total Moles	0.0000
24	Difluoromethane	CH2F2	52.024	351.6	58.30	0.2410	0.2760				
25	Diiodomethane	CH212	267.836	747.0	54.70	0.2400	0.1410				
26	Formaldehyde	CH2O	30.026	408.0	65.86	0.2040	0.2820				
27	Formic Acid	CH2O2	46.026	580.0	73.90	0.1920	0.4730				
28	Methyl Bromide	CH3Br	94.939	467.0	80.00	0.3210	0.1920				
29	Methyl Chloride	CH3CI3Si	50.488	416.3	66.79	0.2680	0.1530				
30	Methyl Trichlorosilane	CH3CI3Si	149.478	517.0	35.30	0.2790	0.2630				
31	Methyl Fluoride	CH3F	34.033	317.7	58.77	0.2510	0.2040				
32	Methyl lodide	CH3I	141.939	528.0	73.70	0.3110	0.1930				
33	Formamide	CH3NO	45.041	771.0	78.00	0.1980	0.4530				
34	Nitromethane	CH3NO2	61.040	588.1	63.13	0.2240	0.3480				
35	Methyl-Nitrite	CH3NO2 CH4	61.040	588.1	63.13	0.2240	0.3480				
36	Methane		16.043	190.6	46.04	0.2880	0.0110				
37 38	Methyl Dichlorosilane Methanol	CH4Cl2Si CH4O	115.034 32.042	483.0 512.6	39.50 80.96	0.2840	0.2760				
38 39	Methyl Mercaptan	CH40 CH4S	48.109	469.9	72.35	0.2240	0.5660				
39 40	Methyl Chlorosilane	CH4S	80.589	469.9	41.70	0.2000	0.2250				
40	Methylamine	CH5CISI	31.057	442.0	74.58	0.3210	0.2250				
42	Methyl Silane	CH6SI	46,144	352.5	48.40	0.3390	0.1390				
43	Tetranitromethane	CN408	196.033	540.0	17.40	0.1810	0.5160				
44	Carbon Monoxide	00	28.010	132.9	34.99	0.2950	0.0660				
15	Carbonyl Sulfide	cos	60.076	378.8	63.49	0.2330	0.0970				
16	Carbon Dioxide	CO2	44.010	304.2	73.82	0.2740	0.2280				
47	Carbon Disulfide	CS2	76,143	552.0	79.03	0.2760	0,1080		Re	gistered to:	dona
48	Bromotrifluroroethylene	C2BrF3	160.921	432.0	44.80	0.2980	0.1750				APLU

Figure 1 - Typical EOS software program component library. Selected components and their molar ratio for a specific gas mixture are shown on the right in this figure.

Selecting the type of flash calculation

The second step is to select the type of "Flash" (calculation) to be utilized (Figure 2).

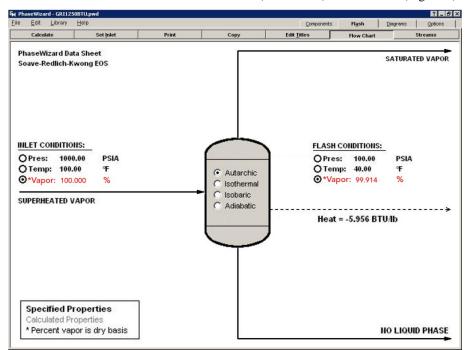


Figure 2 - A flow chart showing a gas stream's "inlet conditions" (initial process condition), four types of typical "flash calculations", and the flash conditions (stream conditions after calculations are performed).

The typical types of flash calculations are listed in Figure 3 with a brief description of each. The autarchic condition was selected for this example.

Autarchic	Autarchic means independent. The two conditions selected for the flash condition or second set of conditions can be chosen independent of the two conditions selected for the "inlet condition".
Isothermal	This means that the temperature for the flash condition is the same as the temperatures selected for the "inlet condition".
Isobaric	It means that the pressure for the flash condition is the same as the pressure selected for the "inlet condition".
Adiabatic	This means that the flash calculation will not include heat entering or leaving the system. I.e. the outlet enthalpy equals the inlet enthalpy plus the work done.

Figure 3 - A table listing four types of commonly used flash calculations.

Input inlet conditions (initial process conditions)

The third step is to enter two of the three "inlet conditions", the third is computed by the program (Figure 2). In this case at 1000 PSIA and 100° F the sample is 100% in vapor phase.

Enter flash conditions

The fourth step is to enter two of the three flash conditions. The two conditions which can be selected will

depend upon which flash calculation method was chosen. In this case the flash conditions selected were 100 PSIA and 40° F (Figure 2).

Perform the calculations.

The fifth step is to perform the calculations. This is accomplished by a single key stroke. Within seconds a wide range of information becomes available.

At a glance, one can determine that the sample in the original (inlet) condition is 100% in vapor phase i.e. no liquid present (Figure 2). The flash condition shows less than 100% vapor so liquid will condense at the selected conditions of 100 PSIA and 40° F.

The "stream properties" table (Figure 4) indicates the physical properties of the gas mixture at the original (inlet) conditions. It also shows that at the flash condition a small amount of the vapor was condensed. This can be determined by noting that after "flash" 99.914% of the original sample was in vapor phase and 0.086% in liquid phase. The change in the physical properties of the original gas mixture can be seen by comparison of the "inlet" and "vapor" columns of data. Worthy of note is the fact that even though only a small percentage of the sample condensed a measurable heat value (BTU) change occurred. The original sample heat value was 1130.65. After flashing to the new conditions the resulting condensation caused the heat value to drop down to 1127.63 3.02 BTU. for а loss of

le <u>E</u> dit <u>L</u> ibrary <u>H</u> elp			Components Flash		Diagrams	Options	
Calculate	Set <u>i</u> nlet	Print	Сору	Edit <u>T</u> itles	Flo	w Chart	Streams
Stream Prope	rties			Inlet		Vapor	Liquid
Condition				Superl	neated	Saturated	Empty
Percent of Fee	ed - Molar			10	0.000	99.914	0.086
Percent Vapor -	molar			1	000.000	100.000	0.000
Pressure - PSIA				11	00.00	100.00	100.00
Temperature - "	8			8	100.00	40.00	40.00
Volume - ft3/lb					0.2295	2.4299	0.0238
Density - Ib/ft3					4.357	0.412	41.935
Z Factor				(0.8222	0.9723	0.0460
Average Mol Wg	gt				21.484	21.424	91.334
Enthalpy - BTU/I	b				50.950	45.262	-28.461
Entropy - BTU/b	⊩°F			8	2.127	2.104	0.602
Heat Capacity -	BTU/lb-°F				0.5030	0.4665	0.4036
Viscosity - centi	ipoise				0.0107	0.0097	0.9881
Thermal Conduc	tivity - BTU/ft-°F				0.0300	0.0254	0.1324
Surface Tension	n - dynes/cm			8			18.6560
Ideal Net Heat	of Combustion -	BTU/SCF		11	30.65	1127.63	4655.95
Critical Tempera	ture - "F			8	-17.17	-18.68	504.52
Critical Pressure	e - PSIA			1;	352.53	1350.32	820.85

Figure 4 - A stream properties table listing some physical properties of the "inlet" (initial) stream, vapor (vapor phase after the flash calculation) and liquid (liquid phase if any was formed after the flash calculation was performed).

By observing the component mole percents table (Figure 5) it can be seen how the condensation impacted the gas phase composition. Note that the higher molecular weight

(lower volatility) components experienced the greatest change.

e <u>E</u> dit <u>I</u>	_ibrary <u>H</u> elp		Components	Fl <u>a</u> sh		Diagrams	Options
Calculate	Set Inlet	Print	Сору	Edit <u>T</u> itles	Flow	Chart	Streams
Component M	ole Percents			Inle	et	Vapor	Liquid
Methane				75	5.0000	75.0614	3.3195
Ethane				12	2.5000	12.5074	3.8281
Propane				6	0000.	5.9987	7.4825
Isobutane				1	.0000	0.9980	3.3294
n-Butane				1	.6000	1.5945	8.0611
Isopentane				0).1800	0.1780	2.5144
n-Pentane				C).2400	0.2363	4.5624
n-Hexane				0).1460	0.1374	10.2030
n-Heptane				0	0.0680	0.0554	14.8075
n-Octane				().0480	0.0266	25.0249
n-Nonane				0).0120	0.0031	10.3656
n-Decane				C	0.0060	0.0006	6.3681
Carbon Dioxide				0	.4000	0.4003	0.0940
Nitrogen				4	2.8000	2.8024	0.0394
Total				100	0.0000	100.0000	100.0000

Figure 5 - A "component mole percents" table listing the composition of "inlet" stream and vapor and liquid streams after flash calculation.

Another source of useful information available immediately after the flash calculation are various diagrams. The most useful one for an analyzer engineer/technician is the Pressure-Temperature phase diagram (Figure 6).

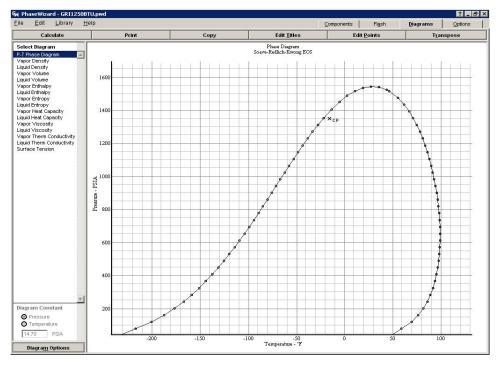


Figure 6 - Pressure-Temperature phase diagram. One of the many diagrams which can be

The phase relationships of a gas mixture can be determined at any pressure and temperature condition by observing the phase diagram. In Figure 7 it can be seen that at pressure and temperature conditions to the left of the phase envelope the sample is 100% liquid. To the right of the phase envelope the sample is 100% in the gas

phase. The pressure and temperature conditions which fall inside the phase envelope result in a two phase (gas and liquid) mixture. Conditions within the envelope to the extreme right result in the least liquid present. Conditions within the envelope to the extreme left result in the maximum amount of liquid.

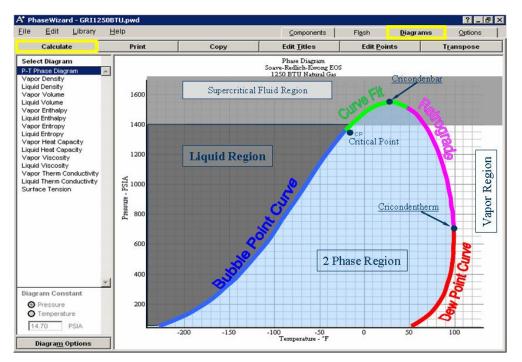


Figure 7 - Pressure-Temperature phase diagram showing the gas/liquid phase relationships

The pressure/temperature conditions in the upper region are in a "supercritical fluid" state. In the supercritical state the fluid is neither a true gas nor a true liquid.

There is a considerable amount of information which can be derived from a P-T phase diagram. This information is available from multiple sources in easy to understand laymen's language. The reader is encouraged to engage in further study of this important topic. A few hours spent studying will save the engineer/technician a considerable amount of time and expense throughout his/her career.

Practical uses for EOS software

Is liquid entrained in the sample source?

The composition obtained by analysis of natural gas sample is entered (Figure 8). The source gas conditions of pressure and temperature are also entered as the "inlet condition". Performing a calculation at this set of conditions shows that the sample was 99.914% vapor (0.086% liquid). It was not necessary to select a flash calculation type or enter a flash (secondary) condition to obtain this result. The answer to the original question is "yes", there was liquid entrained.

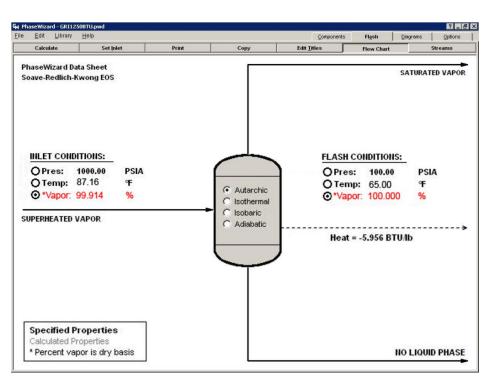


Figure 8 - A flow chart showing the results of a specific application.

What is the Dew point temperature of the sample gas at the source conditions of pressure?

entered as 100% (Figure 9). After the calculation is performed the calculated temperature shown under "inlet conditions" is the dewpoint temperature. In this case, as in the previous example, it was not necessary to enter the Flash calculation Flash condition. type or

The composition is entered, the "inlet condition" of pressure is entered and the "inlet condition" of vapor is

	Help	3152103		Components		grams Option
Calculate	Set Inlet	Print	Сору	Edit <u>T</u> itles	Flow Chart	Streams
PhaseWizard Dat Goave-Redlich-Kv	7.05.0000000000000000000000000000000000				SA	TURATED VAP
⊙Temp: O 'Vapor: 10	000.00 PSIA 91.69 °F 00.000 %		Autarchic C Isothermal C Isobaric	OPre OTer		- PSIA ⁰F %
SUPERHEATED V	APOR		C Adiabatic	Heat	= -0.788 BTU/lb	
Specified Pro					NO	LIQUID PHA:

Will condensation occur in the sample system?

The sample composition and the inlet conditions of pressure and temperature are entered (Figure 10). The autarchic flash calculation type is selected and the sample system conditions of pressure and temperature are entered as the flash conditions. After calculation view the % vapor at the flash condition. If it is 100% then condensation will not occur.

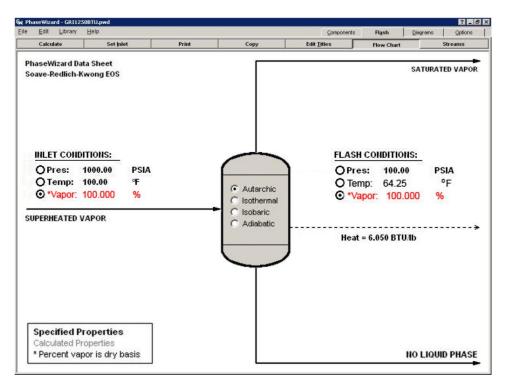


Figure 10 - A flow chart showing the results of a specific application.

Alternatively by calculating a dew point temperature at the sample system pressure condition as previously discussed one can determine if condensation will occur. If the sample system temperature is higher than the calculated dew point temperature condensation will not occur.

This is an important calculation to perform due to the fact that the API 14.1 standard for sampling natural gas requires the sample to remain at a minimum of 25°F above the dew point temperature. Calculating the dew point temperature can therefore be valuable in validating the sampling process.

The answers to many other questions can be found by using an EOS software package. Examples are as follows:

- Is heat tracing of the sample system required for a given ambient temperature condition?
- If the sample temperature dips below the dew point temperature by a known amount, what will be the impact on the sample's gas phase composition, physical properties and heating (BTU) value? How much liquid will condense?

• Will condensation occur during the transition from the initial process condition to the final condition in the sample system? If so, to what degree and how will it impact the sample composition and its properties.

Summary

EOS software are valuable tools which can provide answers to many question which arise during the design, operation and maintenance of sample conditioning systems for natural gas. Although the equations are complex, the software is easy to use. A small amount of time spent in the study of laymen's thermodynamics would be very beneficial to anyone involved with the sampling and analysis of natural gas.

Also worthy of note is the fact that the hydrocarbon dew point temperature of natural gas has taken center stage in recent times. It is the driving force for many past and future changes to the standards governing the sampling and analysis of natural gas.

Donald P. Mayeaux President, A+ Corporation, LLC